当前位置:首页 > 电源 > 功率器件
[导读]摘要:针对有源电力滤波器(APF)谐波控制算法存在的问题,提出了一种基于三电平电压空间矢量脉宽调制(SVPWM)技术的谐波控制算法。该控制算法的功率开关频率低,输出谐波电压含量少,抗电磁干扰能力强,实时效果好。对

摘要:针对有源电力滤波器(APF)谐波控制算法存在的问题,提出了一种基于三电平电压空间矢量脉宽调制(SVPWM)技术的谐波控制算法。该控制算法的功率开关频率低,输出谐波电压含量少,抗电磁干扰能力强,实时效果好。对该控制算法进行了Matlab仿真研究,通过实验成功地在APF中验证了其正确性,实验结果表明该控制算法具有谐波电压含量少,电压利用率高,补偿性能好等优点,同时证明了该控制算法的有效性和可行性。

关键词:有源电力滤波器;三电平;空间矢量脉宽调制;谐波控制

1 引言

谐波控制算法是APF中最重要的部分之一,它直接影响着APF的补偿效果。在三电平逆变器PWM控制方法中,SVPWM以其易于数字实现、电压利用率高、输出谐波成分少、脉动转矩低等优点而得到广泛应用。三电平SVPWM的拓扑结构特点使同样耐压水平的开关器件能够应用于中高压的大容量系统,提高了装置的等效开关频率;三电平逆变器输出为三电平阶梯波,更接近于正弦,减少了输出电压和输出电流的谐波含量。

在深入分析两电平拓扑结构的基础上,提出了三电平SVPWM在APF中的谐波控制功能。详细介绍了谐波控制算法的原理,并对算法进行了

Matlab/Simulink仿真验证,利用TMS320F2812完成了控制软件的编写。设计了基于TMS320F2812+CPLD的APF数字化控制系统,有效验证了谐波控制算法的正确性,提高了APF的实时补偿效果。

2 三电平SVPWM的工作原理

2.1 两电平SVPWM的拓扑结构

两电平SVPWM补偿信号产生过程如下:根据前端检测的三相谐波进行α,β坐标变换,在α,β坐标下进行扇区判断,求参考电压矢量Ur对应的相邻的基本矢量上的作用时间Tx,Ty,再确定空间矢量切换点Tcm1,Tcm2,Tcm3,这样就通过空间矢量切换点导通相应的开关器件产生谐波补偿信号的波形。两电平逆变器主拓扑结构图如图1所示。

同一时刻三相逆变器每个桥臂上下两个开关器件的驱动信号互补,设Sk=1表示上桥臂导通,Sk=0表示下桥臂导通,可得各桥臂输出端电压Uk=SkUd(k=a,b,c),则电压空间矢量为:

空间电压矢量扇区划分如图2所示。以第I扇区为例,则:

式中:T为采样周期。

将Tx,Ty作3/2坐标变换到静止α,β两相坐标系下,则:

这一点在文献中做了详细的说明和验证。

2.2 三电平SVPWM的基本原理

三电平逆变器是在两个开关器件串联的基础上加入一对中性点箝位二极管构成的,其电路拓扑结构如图3所示。

[!--empirenews.page--]

其中,每相桥臂的4个主开关管有3种不同的通断组合形式,即1表示+Ud/2,0表示0,-1表示-Ud/2的3种输出电位。27种开关组合状态对应着19个基本空间电压矢量,幅值2Ud/3,·Ud/3,Ud/3和0分别对应着大矢量、中矢量、小矢量和零矢量。根据两电平矢量构成原理可得三电平的矢量图如图4所示。

当Uβ>0且,则Ur处于第I扇区(0<θ<π/3)。以此扇区为例,它含有大矢量U13=和U0,中矢量U7=,小矢量U1=,零矢量U0。将U1和U2的顶点连接起来,大扇区被分成A,B,C,D 4个区域。设Ur位于A区域中,U0,U1和U2分别对应作用时间为T0,T1,T2,Ur用U0,U1,U2的时间线性组合来近似等效,可得:

U0T0+U1T1+U2T2=UrTs, T0+T1+T2=Ts     (4)

式中:Ts为调制脉冲周期。

[!--empirenews.page--]

同理可求出其他小三角中矢量作用时间,在计算其他五大扇区的矢量作用时间时,只要将上式中的θ值分别用θ-60°,θ-120°,θ-180°,θ-240°和θ-300°来代替即可。

3 控制算法仿真

3.1 两电平SVPWM的仿真

取三相a,b,c分别为只含有标准正弦波电源,通过仿真模型来观察空间矢量切换点Tcm1的调制波形,Tcm2,Tcm3相位依次相差120°和240°,波形与Tcm1相同。Tcm1的波形如图5所示。由图可知,仿真得到的调制波形与输入波形满足相位相反的原则。

3.2 三电平SVPWM的仿真

三电平仿真输入也是采用标准正弦波,整个系统主要包括各区域判断、小三角判断、矢量合成时间计算、触发脉冲的分配等环节。逆变器输出的线电压uab,线电流iab波形如图6所示。

4 软件设计

根据上述三电平SVPWM基本算法原理,在开发的基于DSP+CPLD的数字化控制系统中,由于DSP芯片集成度高,方便谐波的采样和控制计算;而CPLD速度快,且I/O端口多,CPLD开发平台采用MAX+PLUS II平台,基于Verilog HDL硬件描述语言开发程序,两者结合可以保证多组触发脉冲的实时同步。控制系统中DSP进行谐波信号的采样和控制计算,CPLD完成端口的扩展以及接收DSP运算的时间和PWM波。软件算法流程如图7所示。

[!--empirenews.page--]

5 实验

此处开发设计了一套由DSP(TMS320F2812)+CPLD(EPM3256ATC144)作为数字化控制系统的APF装置,验证了该控制算法的可行性和实用性。该装置中,以高速数字信号处理芯片TMS320F2812为核心主控器件,主电路直流侧最大可冲电压为1 kV,逆变桥开关器件为IGBT,由功率模块M57962L驱动。由于电网中变压器多采用角形连接,可以滤除3N(N=1,2,3……)次谐波,所以实验谐波电流采用带基波信号的5次谐波信号的叠加,实验中谐波电流由自制的谐波源来产生,再将APF装置并入谐波源系统中,组成了实验室模拟的谐波发生并补偿装置。设置输出谐波5次,含量20%,按下启动开关,谐波电源开始启动,用万用表测量其输出相电压。将基于三电平SVPWM的谐波控制算法下载到DSP中,补偿前和补偿后的电网波形如图8所示。可见,该控制算法的补偿效果明显,进一步证明了算法的正确性和可行性。

6 结论

针对有源电力滤波器常用谐波控制算法存在的问题,提出了一种基于三电平空间矢量脉宽调制技术的谐波控制算法,这种控制算法的功率开关的频率低,实时效果好。对控制算法进行了仿真和实验研究,验证了该控制算法的正确性,并表明其具有良好的实际应用价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭