当前位置:首页 > 电源 > 功率器件
[导读]对于为获得更高音频系统保真度而努力的您,我们给您介绍一种新的概念。许多系统,特别是应用到家庭影院/迷你小型乐队市场的一些系统,都谨慎地给输出信号增加失真。尽管这样

对于为获得更高音频系统保真度而努力的您,我们给您介绍一种新的概念。许多系统,特别是应用到家庭影院/迷你小型乐队市场的一些系统,都谨慎地给输出信号增加失真。尽管这样做看似不符合我们的常识,但设计人员考虑这么做是有原因的。这种技术的主要目的是最大化平均功率输出,同时限制峰值的出现。

一些客户在一些列产品中都使用相同的功率放大器 IC。这让他们可以更大批量地采购一种器件,从而降低成本,简化库存。他们可能会使用一种小功率电源来节省成本。客户会使用一个小功率电源的闭环、固定增益放大器。它限制了输出电压摆动(通过限制输出),这样可以保护小功率电源免受过电流状态的损坏。但是,一个简单的衰减器便可让系统更加安静。让输出稍微失真,可极大增加感知RMS功率。在确定增加失真程度时需小心谨慎,不得增加过多!

对于其他客户而言,限制其信号的电压输出可帮助限制扬声器漂移。但是,在这种情况下应小心操作,因为进入扬声器的高 RMS 功率可能会引起可靠性问题。

在数字处理系统中,可通过使数字采样饱和给信号引入 THD。也就是说,使用足够增益,推移最高有效位,让其超出数字采样大小。例如,您有一个 24 位字,您的采样为 0x900000。使用 12 Db 增益,最高音频位便超出采样的最高有效位(MSB)。

之后,下调该数据至您需要的音频输出电平。所以,其可以概括为:


图 1 放大信号为削波增加 THD,然后降低输出产生特定峰值到峰值电压的更平均功率

这听起来简单,但许多音频处理器实际并非最高有效位=全量程音频。例如,一些TI的音频处理器使用一种被称为 9.23 的数据格式。这种采样数据可用下列方法表示 16 位或者 24 位数据:



图 2 把标准16位或者24位音频采样映射至 32 位或者 48 位内存位置中

正如您看到的那样,MSB 和 LSB 添加了一些补位。LSB 很容易理解—如果您削减某个 16 位字(使用 CD 播放器),则您仍然有一些无需删减便可复制的位。

在顶端,共有 9 个位,用于防止音频数据意外饱和。例如,如果您使用一个24-dB增压的均衡器 (EQ),并且您输入一个“全量程”16 位字,则您可能会非有意地让信号饱和,也即增加失真,而这与我们努力的方向背道而驰。

削波时存在振幅损失,因此 THD(后)可能允许少量增益通过 THD 管理器。10%失真削波带来约–1dB输出电平损失。

实例操作


在我们的例子中,系统有一条9.23音频通路。我们希望在–12 dB输出下产生10%THD。平均输入为–10 dBFS(–10 dB参考24位全量程音频源)。

我们需要放大至全量程及以上(“溢出位”9位)。因此,在一个增压模块中,我们给原始源添加10 dB,以达到全量程,之后再添加27dB来填充9个溢出位。现在,增加3dB增益,以对信号削波。总计,我们需要增加40dB增益。

现在,我们有一个填充音频通路MSB的信号,并要求进行削减,这样便可在–12 dB下输出内容。这意味着削减39dB。产生的输出具有10%失真,且输出电平为–12 dB。看!我们现在已经在–12 dB输出下增加了RMS功率(通过增加失真),并同时让电源和扬声器的工作都更加轻松惬意。

与图形可编程处理器(例如:PCM3070 等)一起工作时,利用 TI 的 TI’s PurePath™工作室图形开发环境,可以快速地对其进行样机制造和试听。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭