当前位置:首页 > 电源 > 功率器件
[导读]4 测量方法改良4.1 改良思路对比共面度定义以及PCBA贴装和焊接过程对器件引脚共面度值的测量方法,结合公司前期共面度测量、分析经验,公司现有的埋嵌铜块共面度的测量方法

4 测量方法改良

4.1 改良思路

对比共面度定义以及PCBA贴装和焊接过程对器件引脚共面度值的测量方法,结合公司前期共面度测量、分析经验,公司现有的埋嵌铜块共面度的测量方法有如下待改进之处(表7)。

 

 

4.2 改良方法

从表7的分析可知,使用三维坐标仪测量公司埋嵌铜块的共面度,需要在参考平面选取、测量数据量、计算方法和结果评价方法方面进行优化,以使其更加符合共面度原始定义,测量结果更能与客户需求呼应。

4.2.1 参考平面选取

根据共面度定义,被测点的共面度值反映该点与基准面之间的偏移量,对于PCB上的埋嵌铜块而言,其基准面应是铜块所在的PCB局部区域,而非整个PCB板面。而为便于区分埋嵌铜块不同位置的共面度值,我们仍测量器件的四角与中央共五个点,同时测量PCB板面对应铜块四角位置的四个点(板面上点与铜块的距离一般为0.5 mm ~ 1.0 mm),铜块对应的基准面由PCB板面的这四个点构造。

三维坐标仪输出的各点测量结果是三个数字一组的数据(如(5.012,10.251,-0.026)),分别代表测量点所在的X、Y、Z坐标,这一个个点在一个三维空间内。

在高等数学内有如下定义和定理:

定理一:空间内任意两个点之间的连线,以及其连接方向,可以确定一个向量;

定理二:不在同一直线上的三个点,可以确定一个平面;

定理三:过一点做点外一个平面的垂线,则点与垂足组成的线段的长度即为该点到平面的距离。

基于上述定义和定理,我们可以把PCB板面的各测量点组成向量,并构造出平面,然后计算铜块表面各测量点到平面的距离,就可以得到测量点的共面度值。

测量PCB板面呈方形的四个点A1、B1、C1、D1,对于每个测量点,选取与其直角相邻的2个点构造一个平面,则可构造四个平面,如图9所示。定义A1、B1、C1、D1对应的平面为α1、α2、α3、α4.

 

 

下文以构造点A1、B1、D1对应的平面α1为例,介绍使用PCB板面测量点的坐标、采用点法式方法构造基准平面的过程:

(1)选取构造点:设A1点坐标为(x1,y1,z1),B1点坐标为(x2,y2,z2),D1点坐标为(x4,y4,z4);

(2)构造向量:向量A1D1记为a1{(x4-x1),(y4-y1),(z4-z1)},向量A1B1记为b1{(x2-x1),(y2-y1),(z2z1)};

(3)计算平面法向量:

 

 

(4)构造平面α1:点法式方程为:

 

 

同理可利用A1、B1、C1点构造B1点对应的基准平面α2,B1、C1、D1点构造C1点对应的基准平面α3,C1、D1、A1点构造D1点对应的基准平面α4.

4.2.2 测量数据量

为兼顾测量效率和测量结果准确性,设计每个点测量1、2、3次的计算方法,其中每个点测量2、3次时,每次测量时需对同一位置测量2、3次,计算共面度时各点坐标取测量的平均值。

计算共面度时的优先顺序为:单点3次>单点2次>单点1次。可在优先(Excel)表格内编程,实现数据优先级设定。

4.2.3 共面度值计算

如图10,计算铜块表面A(xA,yA,zA)点到基准面的共面度,基准面为点A1、B1、D1所构造的平面α1,已知A1点坐标为(x1,y1,z1),平面α1的点法式方程为:

 

 

则A(xA,yA,zA)点到其基准平面α1的距离dA可用下式计算:

 

 

同理,可计算铜块表面其它各点B、C、D距离其对应的基准平面的距离dB、dC、dD.对于铜块表面中央点E,由于其距离PCB表面参考点A1、B1、C1、D1均较远,故分别计算其到α1、α2、α3、α4四个基准平面的距离dE1、dE2、dE3、dE4,并考量四个计算值的差异,用以辅助评价被测PCB样品是否存在翘曲、样品在测量台面上是否被水平放置。

上述铜块上各点到基准平面的距离dA、dB、dC、dD、dE1、dE2、dE3、dE4,即为被测铜块表面各点的共面度值。dA、dB、dC、dD、dE1、dE2、dE3、dE4中绝对值最大者,即为被测铜块的共面度值。[!--empirenews.page--]

4.2.3 结果评价

(1)各点共面度值:A、B、C、D点共面度值为dA、dB、dC、dD,E点共面度值为dE1、dE2、dE3、dE4中绝对值最大者;

(2)铜块共面度值:dA、dB、dC、dD、dE1、dE2、dE3、dE4中绝对值最大者;

(3)测量结果有效性判定:

①被测PCB板应被水平放置在测量台面上:若被测PCB板上直角相邻的两个基准点之间的高度差与其直线距离的比值>0,则视为被测PCB板可能存在斜放,需调整后重新测量。如:

(z2-z1)/(y2-y1)>0.5%或(z4-z1)/(x4-x1)>n‰,则被测PCB板可能存在斜放。

②被测PCB板在埋嵌铜块区域内存在翘曲:若被测PCB板上某个基准点距其对角的基准点所对应的基准面的距离与该两点直线距离的比值>0,则视为被测PCB板在埋嵌铜块区域内可能存在翘曲,需更换PCB或铜块样品重新测量。

③被测埋嵌铜块存在翘曲:若被测埋嵌铜块上各测量点共面度值极差与该铜块上对角线两点直线距离的比值>0,则视为被测埋嵌铜块可能存在翘曲,需更换PCB或铜块样品重新测量。

4.2.4 标准化和程序化

对使用公司三维坐标仪测量埋嵌铜块共面度的测量方法进行规范,如镜头放大倍率设定、聚焦取景范围设定、光源类型和亮度设定等。

对于测量结果的计算和评价,设计专用表格和程序,处理数据时只需将原始数据(。txt格式)转化成电子表格格式(。txt格式)后粘贴到指定表格内,即可显示测量结果和评价结果。

4.3 改良效果评价

4.3.1 改良前后的测量结果对比

使用公司三维坐标仪,分别采用直接比较五点法和改良后的五点法测量同一嵌铜块样品的共面度,对比测量结果如表8、表9.

 

 

 

 

由上述数据可见,采用改良后的五点法测量结果极差减小,平整度值相对较小,原因是采用构造平面的方法减小了直接对比法计算共面度值带来的误差。

4.3.2 重复性和再现性评价

使用公司三维坐标仪、5个嵌入铜块样品、分别由3个不同测量人各随机测量3次,对测量结果做重复性和再现性评价如表10、表11.

 

 

 

 

由上述分析可见:

(1)使用三维坐标仪测量铜块样品的共面度,重复性变差0.006 mm,再现性变差0.004 mm,重复性和再现性变差0.009 mm,占样品公差范围(±0.152 mm)的6.03%,说明该方法的重复性和再现性很好;

(2)五个被测铜块样品的共面度σ为0.003 mm、样品变差 (PV)为0.015 mm、占铜块样品共面度公差范围(±0.152 mm)的9.73%,说明被测铜块样品表面平整,公司埋嵌铜块产品共面度良好。

4.4 测量方法标准化和程序化

针对该新开发的埋嵌铜块共面度测量方法的测量操作(样品放置、光源选择、镜头放大倍率设定)、数据记录、结果分析等要求,建立一套共面度测量操作和测量结果计算的规范。且针对埋嵌铜块共面度测量结果的原始数据处理、基准平面构造、各测量点共面度值计算过程均已在EXCEL表格内完成编程,形成埋嵌铜块共面度测量数据处理专用软件。使用人员只需将三坐标仪测得的原始测量数据(。txt格式)转化成电子表格(。xls)格式,再复制、粘贴到指定的表格区域内,即可显示共面度值计算结果和测量结果有效性判定结果。其余非操作界面和后台计算界面均已加密处理,避免操作人员误操作损害软件。

5 总结

通过对电子行业内有关共面度的定义、共面度的测量方法和相关标准的了解和吸收,在公司原有较简单的埋入/嵌入铜块共面度测量方法(切片观察法、直接比较五点法)基础上,开发了一种新的埋入/嵌入铜块共面度测量方法及其软件,该方法具有如下特点:

(1)可对埋入/嵌入铜块样品进行无损、重复、高精度在线测量,测量结果可智能计算,且包含测量结果有效性判定功能;

(2)利用高等数学方法对大量原始测量数据进行有效处理,从而得到准确的埋嵌铜块共面度测量结果;

(3)将原始数据处理过程、共面度值计算过程、共面度计算即时显示功能以及计算结果有效性判定等功能实现程序化和模块化,减少了埋嵌铜块共面度测量的工作量和出错概率,提高了该测量方法的实用性;

(4)相比电子行业常规测量方法,不需新增专用设备,节省了设备投资或改造费用。

科技、社会的发展推动着PCB行业的迅猛发展,在赋予我们无数机遇的同时也带给我们前所未有的挑战,它将永远鞭策着我们不畏艰险、迎难而上。在开创PCB新工艺、新技术、新产品的道路上,我们任重而道远。

开启新思维、提出新见解、采用新方法,不断开发出符合客户要求的高科技产品将是我们永远的追求和动力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭