当前位置:首页 > 电源 > 功率器件
[导读]文章通过程序控制Stm32芯片产生PWM方波使电机带动永磁体旋转,其定子绕组上感应出的电压信号通过装置中包括的巴特沃斯二阶低通滤波器,并且再通过带偏置的反相比例放大器。将滤波后的信号输入装置中,通过对所采集信号的采集、判读,检测是否存在反嵌绕组。通过实验研究后表明,该研究成果在电机不通电的情况下以最简单的方法完成对定子是否存在反嵌绕组的检测。

  1.引言

  电机是在工业生产过程中普遍使用的装置,电机的故障往往会带来严重的后果与损失。定子绕组是三相异步电动机的主要组成部分,也是电动机最容易损坏而造成故障的部件。异步电机在生产过程中,由于生产工人的失误,有可能发生定子绕组反嵌的现象,发生电动机启动困难,三相电流严重失衡且电流急剧上升,接反元件的那一组绕组中的电流更大,电动机发生异常响声并剧烈振。如果不及时断电停机,电动转速下降,机定子绕组很快会被烧毁。为避免造成更大的损失,需要及时检出。

  现有的检测方法在实际应用中,往往在生产应用中需要拆除电机,或者等到电机产生故障时才能够发现绕组错误。检测方法主要是在电机出现故障后,将电机定子取出,接入直流电源后,使用磁针来判断是否存在绕组反嵌。

  磁针测试的方法效果也有一定局限性,需要较大的电压及磁性较强的磁针。在实际应用及生产中,检测的有效性及时效性差,大大降低效率。

  本研究利用永磁体在转子位置以适当的转速旋转一周以上,就会在定子绕组上感应出相应电压信号的原理,采用芯片及电路结合的检测装置替代原有的人工检测方法。通过实验研究证明了所提出综合检测方法的准确性和可行性。

  2.反嵌绕组检测装置设计

  当永磁体在异步电机转子位置旋转一周以上时,就会在定子绕组上感应出相应的电压信号。若永磁体足够窄,可以认为其旋转时每次只切割一条线圈边,当被测相绕组没有反接时,被永磁体切割的相对的两个线圈边上会感应出大小相同方向相反的电势,它们相互抵消,使得该相输出电压接近0,;当该相绕组中有绕组反嵌时,则在相对的两个线圈上边感应出大小相同方向相同的电势,电势相互叠加,使得该相输出电压有峰值和谷值。从理论分析很容易可以发现,若有绕组反嵌,峰谷值出现具有规律性,在实际波形检测中也应征了这点,由此,可进一步实现对反嵌绕组位置的指明。

  由于永磁体在异步电机中旋转时气隙的不均匀,其输出的感应电压会有较强的波动,即尖脉冲,这会严重影响到单片机电压读入的精确性,所以必须要进行滤波,需要的是低通滤波器,为了提高性能,采用巴特沃斯二阶低通滤波器将高次脉冲滤除。

  但与此同时使得输出的感应电压的幅值衰减,为了得到利于鉴别的电压幅值,要求对电压进行放大。由于单片机的输入电压只能为正值,则要求要对电压信号进行偏置。两者综合,对电压信号再进行偏置放大处理,采用带偏置的反相比例放大器。

  

 

  出于STM32单片机系统能对信号快速检测处理且价格低廉的优点,先根据异步电机型号设置参数后由DAC端口输出通过步进电机驱动器驱动异步电机转一圈的信号,同时ADC循环输入采集检测,并根据信号输入生成是否有反嵌绕组的判断,并作出相应的操作输出,通过步进电机驱动器操控异步电机,若有反嵌绕组,则在一圈内指向反嵌绕组所在位置,若不存在反嵌绕组,则异步电机在原来已转一圈的基础上再转一圈,同时stm32上跑马灯指示。

  3.实例验证

  用装置中stm32单片机读取读取滤波后电压信号前,调节放大点位器与偏置电位器,使单片机能够读出电压信号峰值与谷值,进行AD转换。根据峰值谷值结合永磁体的转向进行计算分析。首先使永磁体旋转一周,如果ADC读入电压信号峰谷值之差在一个范围外,则电机内有绕组反嵌,进一步控制步进电机旋转至反嵌绕组位置;如果峰谷值之差在一范围内,则电机内无绕组反嵌,装置闪烁指示灯进行说明。

  本项目在实际测量中电机极数为4极,每相线圈数为4,采用异步电机额定功率200-500W,单片机控制的PWM波频率为1.6kHz,而异步电机旋转一圈需要400个脉冲,则感应电压的频率为4Hz.

  图2为实例检测图,图2-1为绕组正接图,图2-2为绕组反接图,其中max_a、min_a为最大值最小值所在位置。

  

 

  实测可见,存在反嵌绕组时最大值最小值有仅2000的差值,而没有反嵌绕组时仅有5的差值,由此可将其区分,进一步找出反嵌绕组所在位置。

  4.结论

  本研究装置以STM32为开发平台,将现代信号处理技术应用于电机检测中,使用芯片及电路结合的检测装置替代原有的人工检测方法,提供一种基于stm32的异步电机绕组反嵌检测装置。该研究装置是利用永磁体在转子位置以适当的转速旋转一周及以上会在定子绕组上感应出相应的电压信号这一原理,在保持原电机定转子完整性的前提下,实现对电机是否有绕组反嵌的快速检测,并能清晰明确的指示出结果,并能将反嵌绕组迅速指出。其响应速度快,检测准确,能够直观的反应电机的故障,为电机的控制检测带来很大的便利。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭