当前位置:首页 > 电源 > 功率器件
[导读]射频功率放大器的宽带匹配设计在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。例如,工作于多个倍频程甚至于几十个倍频程。这就需要对射频功放

射频功率放大器的宽带匹配设计

在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。例如,工作于多个倍频程甚至于几十个倍频程。这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使射频功率放大管的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。同轴电缆阻抗变换器简称同轴变换器,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。同轴变换器具有功率容量大、频带宽和屏蔽性能好的特性,可广泛应用于HF/VHF/UHF波段。

1 方案设计

同轴变换器及其组合是一种具有高阻抗变换比的宽带阻抗匹配网络,它能将射频功率放大管的较低的输入阻抗或输出阻抗有效匹配到系统的标准阻抗50 Ω。同轴变换器设计方案多选用1:1变比形式、1:4变比形式及其组合形式。

1.1 同轴变换器原理

同轴变换器是由套上铁氧体磁芯的一段同轴电缆或同轴电缆绕在铁氧体磁芯上构成,一般称为“巴伦”。“巴伦”的结构如图1(a)所示,其等效电路如图1(b)所示。

 

 

同轴变换器处于集中参数与分布参数之问。因此,在低频端,它的等效电路可用传统的低频变压器特性描述,而在较高频率时,它是特性阻 抗为Zo的传输线。同轴变换器的优点在于寄生的匝间电容决定了它的特性阻抗,而在传统的离散的绕匝变压器中,寄生电容对频率性能的贡献是负面作用。

当Rs=RL= Zo时,“巴伦”可以认为是1:1的阻抗变换器。同轴变换器在设计使用上有两点必须注意:源阻抗、负载阻抗和传输线阻抗的匹配关系;输入端和输出端应在规定的连接及接地方式下应用。在大多数情况下,电缆长度不能超过最小波长的八分之一。为了保证低频响应良好,还必须有一定绕组长度,可以依据下列经验公式来估算在频率高端和频率低端时所需绕组的长度。

在高频端:

lmax≤ 18 O00n/fh(cm)。 (1)

式中,fh为最高工作频率(MHz);n为常数,一般取为0.08左右。

在低频端:

lmin≥ 50Rl / [ (1 + u/uo ) × fl ]。 (2)式中,fl为最低工作频率(MHz);u/uo为磁芯在时的相对磁导率。

磁芯的影响可以用等效电感来反应,等效电感决定了频段低段反射量的大小,计算为:

L=uo ur n2 (S/J) (3)式中,L为电感值(H);ur为相对磁导率;uo=4πx 10-7;S为磁环的面积;J为平均电长度;n为线圈圈数。

为避免频段高段指标恶化,电感值不能大于实际需要值,其经验公式为:

L = 4( R/Wmin) (4)

式中,R 为中间频带的输入阻抗;Wmin为最小角频率。

1.2 1:4同轴变换器设计

1:4同轴变换器由长度相等的2根同轴电缆组成,其结构如图2(a)所示。1:4同轴变换器水平旋转180°即可作为4:1同轴变换器。

理想的1:4同轴变换器的输入、输出阻抗都匹配,每根同轴电缆的输入、输出阻抗等于其特征阻抗Zo,其等效电路模型如2(b)所示。

其源阻抗Zg与负载阻抗ZL的变换比为:Zg / ZL = Zin / Zout = (Zo /2) / (Zo + Zo) (5)

图2和式(5)表明,1:4同轴变换器的阻抗变换比等于输入阻抗与输出阻抗之比。同轴变换器的输入阻抗等于同轴电缆特征阻抗的并联,输出阻抗等于同轴电缆特征阻抗的串联 。

 

 

1.3 集中参数元件匹配设计

由于阻抗变换器传输电缆的特征阻抗是实数,而射频功率放大管的输入阻抗与输出阻抗一般都是复数阻抗。因此,需要将射频放大管的输入阻抗与输出阻抗实数化,实现对源阻抗或负载阻抗的共轭匹配,从而实现功率的最大传输 。复数阻抗可以用电阻与电抗串联表示,也可以用电阻与电抗并联表示。用集中参数元件实现阻抗匹配的方法是,电阻并联电抗减小其实部,再串联电抗抵消其虚部,达到2个纯电阻的匹配;当匹配的不是纯电阻时,可以采用集中参数的电容或电感来抵消和吸纳复数阻抗虚部的方法来实现复数阻抗的实数化 。

2 需解决的关键技术问题

2.1 低频增益压制

射频功率放大管的增益随频率的增高而下降,一般情况下,每增加一个倍频程,增益下降约3 dB。在窄带电路中,增益随频率的增高而下降的情况可以忽略不计,但在多倍频程电路中,必须考虑对低频增益的压制。解决的方法是使用电阻负反馈网络,电阻负反馈网络用于压制平滑放大器在低频上高增益特性,电阻值越小压制平滑作用越大。以高频段增益为基准增益,使用100~200 n 电阻,将低频段的增益降低到大于基准增益2~3 dB。[!--empirenews.page--]

2.2 同轴电缆特性阻抗选择

同轴“巴伦”完成平衡至不平衡的转换,一般选用50 n特性阻抗。1:4同轴变换器电缆需要考虑源或负载电阻的大小,计算公式如下:

Zo = (4R)2 / 25(Ω)。 (3)

式中,Zo为电缆特性阻抗;R为源或负载电阻。

2.3 磁芯的散热及功率校验

输出匹配网络中,同轴变换器在传输高功率时,由于电路损耗,磁芯会累积较多的热量,进而会引起磁芯温度的急剧升高,严重时会导致磁芯的磁导率下降,影响同轴变换器的低频响应。解决的方法是给磁芯采取良好的散热措施,用导热胶将磁芯直接固定在金属散热底板上。

磁芯材料的选择十分重要,要得到高的电感值必须选用高磁导率的磁芯;为了选择用于同轴变换器的合适的铁氧体磁芯,需要知道磁芯的饱和磁通量和它的非线性特性。当传送功率较大时,必须检验磁环的功率容量。这是由于磁环的磁通量,在功率较大时会出现磁饱和,以致大信号时等效电感值下降,功率送不过去。同轴变换器磁饱和的一般规律是频率越低越严重,所以其功率校验要在低频率上进行。

3 设计实例

根据工程需要,运用同轴变换器宽带匹配技术设计一种多倍频程高功率放大电路,覆盖民用和军用频带,频率范围为20~500 MHz。功率管选用双管芯结构的平衡型n沟道增强型射频放大管BLF574。设计用于输出功率达350 W,功率增益大于16 dB,频率范围高HF至UHF的宽带功率放大器。在225 MHz频率左右器件的输入和输出阻抗都呈感性,输入阻抗Zs =(3.2+j2.5)Ω,输出阻抗ZL = (7.5+j4.0)Ω。

3.1 输入匹配网络

BLF574有一个相当大的输入电容,为了提供器件输入端在多倍频上的宽带匹配,必须考虑输人电容在频率高端的影响,且折中考虑中间频率及较低频率上低值输入阻抗的影响。输入匹配网络设计成2级级联的4:1同轴变换器,完成16:1阻抗变换,将5O Ω标准阻抗匹配接近于3 Ω,这个值还要通过简单的串联微带线和并联电容转换成器件的输入电阻。第1级4:1同轴变换器电缆选择UT - 047 -25,特性阻抗Zo=25 Ω,电缆长度45 mm。补偿低频响应的磁芯选择2861002402,初始磁导率ui = 125。第二级4:1同轴变换器电缆选择UT - 043 -l0,特性阻抗Zo =10 Ω,电缆长度45 mm,补偿低频响应的磁芯同样选择2861002402。输入匹配网络如图3所示。

 

 

3.2 输出匹配网络

输出匹配网络设计成1:4同轴变换器级联同轴“巴伦”的形式。1:4同轴变换器电缆选择UT - l4l- l5,特性阻抗Zo =15 Ω,电缆长度68 mm。补偿低频响应的磁芯选择2661540202,初始磁导率ui=125。同轴“巴伦”完成平衡至不平衡输出的转换,同轴“巴伦”电缆选型UT - 141,特性阻抗Zo =50Ω,电缆长度68 mm。匹配电阻为:R =(25×15)1/2 / 4=4.8 Ω,这个值需要通过简单的串联微带线和并联电容转换成器件的输出电阻。输出匹配网络如图4所示。

 

 

3.3 软件仿真及测试验证

3.3.1 软件仿真

将功率放大管的输入阻抗和输出阻抗各自假设为随频率变化的可变阻抗,按照宽带网络阻抗近似匹配法进行阻抗匹配,使用软件工具Ansoft-Serenade 8.7,分别建立以同轴阻抗变换器为模型的输入和输出宽带匹配网络,匹配端口均为标准50 Ω特征阻抗,匹配目标为输入或输出端口电压驻波比VSWR ≤2:1。利用频率参数扫描曲线,经调整优化各同轴电缆长度及特性阻抗、串联微带线的长度和并联电容的值得出宽带内理想的驻波一频率特性曲线。

3.3.2 测试验证

对根据以上设计完成的实际电路进行测试,在20~500 MHz频带内,输入回波损耗≤1.95:1,输入功率10 W 时,放大器的最小输出功率>350 W。测试结果表明,放大器的性能状态良好,所设计的同轴变换器匹配网络满足宽带匹配及功率要求。

4 结束语

同轴电缆阻抗变换器及其组合可以实现高的阻抗变换比,而且具有承受功率容量大、传输频带宽和屏蔽性能好的特点,结合少量集中参数元件组成匹配网络,实现了多倍频程功放的宽带匹配,有望解决一套发信机配备多台窄带功放的问题。该宽带匹配方法可以广泛使用于HF/VHF/UHF波段,具有良好的工程应用价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭