当前位置:首页 > 电源 > 功率器件
[导读]多数半导体组件结温的计算过程很多人都知道。通常情况下,外壳或接脚温度已知。量测裸片的功率耗散,并乘以裸片至封装的热阻(用theta或θ表示),以计算外壳至结点的温

多数半导体组件结温的计算过程很多人都知道。通常情况下,外壳或接脚温度已知。量测裸片的功率耗散,并乘以裸片至封装的热阻(用theta或θ表示),以计算外壳至结点的温升。这种方法适用于所有单裸片封装,包括双极结晶体管(BJT)、MOSFET、二极管及晶闸管。但对多裸片绝缘栅双极晶体管(IGBT)而言,这种方法被证实不足以胜任。

某些IGBT是单裸片组件,要么结合单片二极管作,要么不结合二极管;然而,大多数IGBT结合了联合封装的二极管。大多数制造商提供单个θ值,用于计算结点至外壳热阻抗。这是一种简化的裸片温度计算方法,会导致涉及到的两个结点温度分析不正确。对于多裸片组件而言,θ值通常不同,两个裸片的功率耗散也不同,各自要求单独计算。此外,每个裸片互相提供热能,故必须顾及到这种交互影响。

本文将阐释怎样量测两个组件的功率耗散,使用IGBT及二极管的θ值计算平均结温及峰值结温。

 

图1:贴装在TO-247封装引线框上的IGBT及二极管。

功率计算

电压与电流波形必须相乘然后作积分运算以量测功率。虽然电压和电流简单相乘就可以给出瞬时功率,但无法使用这种方法简单地推导出平均功率,故使用了积分来将它转换为能量。然后,使用不同损耗的能量之和以计算波形的平均功率。

在开始计算之前定义导通、导电及关闭损耗的边界很重要,因为如果波形的某些区域遗漏了或者是某些区域被重复了,它们可能会给量测结果带来误差。本文的分析中将使用10%这个点;然而,由于这是一种常见方法,也可以使用其他点,如5%或20%,只要它们适用于损耗的全部成分。

正常情况下截取的是正在形成的正弦波的峰值波形。这就是峰值功率耗散。平均功率是峰值的50%(平均电压是峰值电压除以√2,平均电流是峰值电流除以√2)。

一般而言,在电压波形的峰值,IGBT将导电,而二极管不导电。为了量测二极管损耗,要求像电机这样的无功负载,且需要捕获电流处于无功状态(如被馈送回电源)时的波形。

 

图2:IGBT导通波形。

导通时,应当量测起于IC电平10%终于10% VCE点的损耗。这些电平等级相当标准,虽然这样说也有些主观性。如果需要的话,也可以使用其他点。无论选择何种电平来量测不同间隔,重要的是保持一致,使从不同 组件获取的数据能够根据相同的条件来比较。功率根据示波器波形来计算。由于它并非恒定不变,且要求平均功率,就必须计算电源波形的积分,如波形迹线的底部 所示,本案例中为674.3 μW(或焦耳)。

 

图3:IGBT关闭波形。

与之类似,关闭损耗的量测如下图所示。

 

图4:IGBT导电损耗波形。

导电损耗的量测方式类似。它们应当起于导通损耗终点,终于关闭损耗起点。这可能难于精确量测,因为导电损耗的时间刻度远大于开关损耗。

 

图5:二极管关闭波形。

必须获取在开关周期的部分时段(此时电流为无功模式使二极管导电)时的二极管导通损耗资料。通常量测峰值、负及反向导电电流10%点的资料。

 

图6:二极管导电损耗波形。

二极管导电损耗是计算IGBT封装总损耗所要求的最后一个损耗成分。当计算出所有损耗之后,它们需要应用于以工作模式时长为基础的总体波形。当增加并顾及到这些能量之后,它们可以一起相加,并乘以开关频率,以获得二极管及IGBT功率损耗。[!--empirenews.page--]

裸片温度计算

为了精确计算封装中 两个裸片的温度,重要的是计算两个裸片之间的自身发热导致的热相互影响。这要求3个常数:IGBT的θ值、IGBT的θ值,以及裸片交互影响ψ(Psi)。某些制造商会公布封装的单个θ值,其中裸片温度仅为估计值,实际上精度可能差异极大。

安森美半导体IGBT组件的数据表中包含IGBT及二极管θ值图表。稳态θ值如图7及图8中的图表所示。IGBT的θ值为0.470 °C/W,二极管为1.06 °C/W。计算中还要求另一项热系数,即两个裸片之间的热交互影响常数ψ。测试显示对于TO-247、TO-220及类似封装而言,此常数约为0.15 °C/W,下面的示例中将使用此常数。

 

图7:IGBT瞬时热阻抗。

 

图8:二极管瞬态热阻抗。

IGBT裸片温度

IGBT的裸片温度可以根据下述等式来计算:

 

假定下列条件:

TC= 82°C

RΘJC-IGBT= 0.470 °C/W

PD-IGBT= 65 W

PD-DIODE= 35 W

Psi交互影响= 0.15°C/W

IGBT的裸片温度就是:

 

二极管裸片温度

RΘJC-diode= 1.06°C/W

 

类似的是,二极管裸片温度为:

 

峰值裸片温度

上述分析中计算的温度针对的是平均裸片温度。此温度在开关周期内不断变化,而峰值裸片温度可以使用图7和图8中的热瞬时曲线来计算。为了计算,有必要从曲线 中读取瞬时信息。如果交流电频率为60 Hz,半个周期就是时长就是8.3 ms。因此,使用8.3 ms时长内的50%占空比曲线,就可以计算Psi值:

IGBT 0.36 °C/W

二极管 0.70 °C/W

 

IGBT裸片的峰值温度就会是:

 

二极管裸片峰值温度就是:

 

结论

评估多裸片封装内的半导体裸片温度,在单裸片组件适用技术基础上,要求更多的分析技术。有必要获得两个裸片提供的直流及瞬时热信息,以计算裸片温度。还有必要量测两个组件的功率耗散,分析完整半正弦波范围抽的损耗。此分析将增强用户信心,即系统中的半导体组件将以安全可靠的温度工作,提供最优的系统性能。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭