当前位置:首页 > 电源 > 功率器件
[导读]当前VLSI 技术不断向深亚微米及纳米级发展,模拟开关是模拟电路中的一个十分重要的原件,由于其较低的导通电阻,极佳的开关特性以及微小封装的特性,受到人们的广泛关注。模

当前VLSI 技术不断向深亚微米及纳米级发展,模拟开关是模拟电路中的一个十分重要的原件,由于其较低的导通电阻,极佳的开关特性以及微小封装的特性,受到人们的广泛关注。模拟开关导通电阻的大小直接影响开关的性能,低导通电阻不仅可以降低信号损耗而且可以提高开关速度。要减小开关导通电阻,可以通过采用大宽长比的器件和提高栅源电压的方法,可是调节器件的物理尺寸不可避免地会带来一些不必要的寄生效应,比如增大器件的宽度会增加器件面积进而增加栅电容,脉冲控制信号会通过电容耦合到模拟开关的输入和输出,在每个开关周期其充放电过程中会消耗更多的电流,时间常数t=RC, 充放电时间取决于负载电阻和电容,使得开关的速度变慢,同时增大宽长比也增加了器件的成本。当前减小导通电阻的普遍办法是提高开关管的栅电压。

1 传统模拟开关原理及栅增压原理

 

 

端分别为传送信号的输入、输出端,两个管子的栅极分别由极性相反的信号来控制。由于MOS管的源极和漏极可以互换,因此这个电路的输入、输出端也可以互换,它可以控制信息双向流通,就像一个双向开关。工作过程:当控制信号S=1 时,PMOS 管和NMOS管均导通,传输门接通,信号畅行无阻;当控制信号S=0 时,PMOS 管和NMOS 管均截止,传输门关闭,开关断开。当一管的导通电阻减小,则另一管的导通电阻就增加。由于两管是并联运行,可近似地认为开关的导通电阻近似为一常数。这是CMOS 传输门的优点。

1.1 模拟开关分析

CMOS 开关的导通电阻为:

 

 

展开为:

 

 

其中un 和up 表示NMOS 管和PMOS 管迁移率;Cox 表示器件的栅氧化层电容;Vg 表示NMOS 管栅电压,Vthn|Vthp|分别表

示NMOS 管和PMOS 管的阈值电压,如果设计时取

 

 

时,式(2)可化简为:

 

 

导通电阻将不随输入信号改变而改变,可等效为一个恒定阻值的电阻,如式(3),不会引起模拟信号的失真,由于导通电阻是由两个电阻并联,所以阻值较单管开关小得多,使得开关速率又得到提高。从式(3)中可以知道MOS 开关为了能提高速度和精度,需要抬高NMOS 管的栅电压。增加栅电压最直接的办法就是提高电路的电源低压,但是从低电压系统角度来说这增加了成本,因此需要加一个电源电路,最好的办法是芯片内部产生一个电压来增加栅电压。

1.2 栅增压原理

栅增压原理是依靠电荷泵的工作原理:先贮存能量,然后以受控方式释放能量,以获得所需的输出电压。本文中所用的电容式电荷泵采用电容器来贮存能量,通过电容对电荷的积累,电容A 端接时钟信号Clk,当A 点电位为0 时,B 点电位为Vdd;当A点电位为Vdd 时,由于电容两端的电压不会突变,理想情况下,此时B 点电位被抬升为2Vdd,因为电荷泵的有效开环输出电阻存在,使得实际情况B 点电位低于2Vdd。

 

 

2 改进型模拟开关电路设计

2.1 电路描述和分析

图4 为本文设计的栅增压电路,M3 和M4 组成了一对传输门,可以保证输入信号在高低电压无损失地传输到传输门的另一端。M1 的栅极接反相器的输出端,漏源两端分别接电容正极板和电源电压,M1 的作用是当开关连通且时钟信号为高电平时,保证电容电压抬升后不会迅速放电使电容正极板电位为0。M2 的栅极接时钟信号CLK,漏源两端分别接电容正极板和电源电压,它的作用是当开关关闭时,M2 导通时使电容正极板电位保持在电源电压。下面分析该电路的工作情况:

当开关关闭时,S 为低电平,M1 导通,保证电容正极板上的电压最低为VDD,此时M3 和M4 都不导通,信号不能达到输出端。当开关导通时,S 为高电平,M1 截止,时钟为低电平时,M2 和M5 导通,M1 和M6 关闭,电容充电至P-Vds;CLK为高时,由于电容两边电压不会突变,电容正极板上的电压会被抬升至原来的两倍。

从上面分析可知,所有跟开关栅端电压连通的电压都是和输入信号无关的,因此开关导通电阻与输入信号无关,可以大大抑制信号有关的电压损失,保证了信号的线性度和器件的可靠性。

 

[!--empirenews.page--]

 

 

 

2.2 性能仿真及结果分析

基于NEC0.35umCMOS 工艺的模型参数,采用Spectre 模拟软件,对图3 进行模拟仿真。电源电压为5V,输入信号singlin为500KHZ,信号幅度5V,电荷泵时钟为100MHZ,电容为1.8pf,仿真得到了开关导通电阻随Vg 电压的变化(图5)、电荷泵抬升后的电压(图6)和输出信号结果(图7),可见,导通电阻在大于电源电压时急剧降低,电容正极板上的电压可以抬升至9V,输出电压波形比较理图想,损耗很小,几乎没有。

 

 

 

 

 

 

3 结语

本文分析了CMOS 模拟开关对传输信号的影响。利用电荷泵技术,设计了一种5V 电源电压下的模拟开关,该器件适用于0~5V 的输入信号,并能将0~5V 的时钟信号抬升到0~10V,从而具有更好的线性特性和更小的导通电阻,大大降低信号的失真。对开关电路进行了分析,采用Spectre 软件,基于NEC0.35um CMOS 工艺条件进行仿真,验证了该结构的线性度和可靠性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭