当前位置:首页 > 电源 > 功率器件
[导读]目前,随着电力电子技术的发展,高压大容量电力电子变换技术应用越来越广泛,有进一步延伸为我国新的生产力和经济增长点的趋势,其发展前景与计算机信息产业等行业并驾齐驱

目前,随着电力电子技术的发展,高压大容量电力电子变换技术应用越来越广泛,有进一步延伸为我国新的生产力和经济增长点的趋势,其发展前景与计算机信息产业等行业并驾齐驱” 。为了满足高压大功率的要求,在变换器中常用的有器件串并联,但器件的串并联会带来开关器件的均压、均流等一系列问题。20世纪80年代以来,多电平变换器拓扑的提出,无疑是一种解决这些问题的好方法。它是一种通过改进变换器本身拓扑结构来实现高压大功率输出的新型变换器,它无需升降压变换器和均压电路;同时,由于输出电压电平数的增加,使得输出波形更接近调制波,降低了输出电压的畸变,减少了输出电压谐波。

本研究以二极管箝位型三电平逆变器拓扑为例,分析其控制策略,并采用“DSP+FPGA”结合来实现三电平逆变器的快速控制。

1 SVPWM 控制策略

二极管箝位型三电平逆变器的主电路拓扑如图1所示。S1和S3,S2和S4 的驱动信号完全互补。因此,每一相有3种输出开关状态,假设输出的三个电平从高到低依次为“2”、“1”和⋯0’,⋯2’表示正电平,“1,’表示零电平,“0”表示负电平。

 

SVPWM以其输出电压利用率高 ,中点电压平衡易于控制等优势,目前得到了广泛应用。由图1可知,由于每相有3种输出状态,因此三相三电平逆变器有27种开关状态,有效开关状态有19种,即19种电压矢量。本研究算法的本质是把给定参考矢量由三维参考系转换成(g,h)参考系 :

 

在转换的(g,h)参考系中,三电平逆变器的开关状态矢量如图2所示。

 


由于在(g,h)坐标系中的坐标都采用截尾法处理,所有开关状态矢量只有整数坐标。所有开关矢量都用整数坐标表示是非常有利的,因此,可以很容易求得最接近参考矢量的4个基本矢量坐标:

 


这些矢量的坐标组合成参考矢量坐标的整数值。矢量下标U代表其中的变量向上取整, 代表向下取整。

V ul 和V lu 始终是合成参考矢量的两个基本矢量。第3个矢量由下面计算公式的正负号决定:

最后一步是把求得的(g,h)两维坐标转换成开关状态的三维坐标:

 


像(1,0)这种小矢量坐标,可以转换成2种开关状态(1,0,0)和(2,1,1),这个是小矢量的2种情况。可以通过输入电容充放电平衡控制来选择最合适的小矢量,它是由基于每个电容的电压值和负载电流方向来决定的。

2 DSP和FPGA功能

本研究采用的“DSP+FPGA”是实现多电平实验平台的一种方案,可以快速方便地实现PWM 的输出,而且采用逻辑运算更方便。

 


三电平逆变器的系统控制框图如图3所示。图3中,DSP功能采样电压电流信号后,把它们从静止的三相坐标(abc)转换成旋转三相坐标(dqo),并与给定参考值比较以得到差值。这个差值信号在PI调节器环节中补偿后,由补偿后的三相坐标(dqo)转换成参考三相坐标(abc),并合成参考矢量。再由空间矢量调制方法计算得到合成参考矢量的开关状态,并计算得到相应的矢量占空比,接着求出每个矢量的时间间隔,最后把相应的合成参考矢量的基本矢量和时间间隔传送到FPGA。

 

 

[!--empirenews.page--]

FPGA的功能如图4所示。这些功能在FPGA硬件平台上都可以通过简单的编程快速实现。尤其是FPGA编程具有很多的优势:工作可靠、编程简单、容易实现、工作频率高、程序运行时问短、占用资源少等。

 


3 仿真和实验验证

本研究在三电平变换器实验平台上进行了并网实验,装置的并网实验波形如图5所示,分别为并网实验的相电压波形和相电流波形,电压波形THD=2.449% ,电流波形THD=3.439% 。从图5中可以看出,三电平实验波形的THD较小,极大地改善了电网质量。同时采用“DSP+FPGA”结合的方法,提高了资源的利用率,可以节省更多的DSP资源来进行并网实验的控制。在本研究三电平逆变器实验系统中,控制系统中DSP板采用Texas Instruments 320I F2407最小系统板,作为并网实验的核心控制资源,FPGA板选用Xilinx Spartan 3E开发板做为辅助功能,以提高DSP的资源利用率。

 


同时,本研究通过Matlab软件仿真和实验结果对比来验证该控制策略的可行性以及准确性。驱动信号和线电压波形的仿真结果和实验结果如图6 图7所示。

 


通过对上述图6、图7中所示的驱动信号和线电压波形的仿真和实验结果做比较后,得到的实验结果和软件仿真是一致的,同时验证了该控制方法的正确性。图6中,波形采样点是n,b两相的驱动波形。图7中,波形中采样点分别是滤波前的线电压波形和滤波后的线电压波形。

4 结束语

本研究所实现的是DSP和FPGA的三电平变换器并网实验,实验中所采用的空间矢量控制方法简单易行,不但相应地最大化利用了软件资源,而且控制方法快速可靠。研究结果表明,这种控制方法适合于任意电平的控制,可节省大量资源,并可以实现更多功能。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭