当前位置:首页 > 电源 > 功率器件
[导读]混合分立式功率放大器设计电路设计我们前面展示的分布式放大器技术对MMIC效果明显。然而,对于混合分立式设计来说,要实现多级是十分困难的。我们选择采用一种桥接T拓扑结构

混合分立式功率放大器设计

电路设计

我们前面展示的分布式放大器技术对MMIC效果明显。然而,对于混合分立式设计来说,要实现多级是十分困难的。我们选择采用一种桥接T拓扑结构,将单个晶体管的输入端匹配至50Ω。我们选择了合适的晶体管的尺寸,以便输出端的50Ω端口与其目标负载线完好匹配,因此,放大器输出端可以不匹配。我们选择了一款周长为1.24mm的晶体管。另外,借助周长为2.48mm的晶体管也可实现不错的负载线,其一般具有更高的效率和更低的功率密度。要进一步优化性能,可以在电路板级进行更多匹配。MMIC成品如图4所示。芯片的最终尺寸为1.277mm ×1.06mm。用周长为2.48mm的晶体管(本文中未讨论)打造的另一款芯片的尺寸为1.277mm ×1.305mm(大23%)。

 

 

图4:用于混合分立式功率放大器解决方案的MMIC成品图(左)和原理图(右)。

桥接T拓扑结构是Zobel网络的修改版,可以在输入端提供恒定阻抗。用于匹配晶体管输入端的拓扑结构如图4所示。该电路的匹配设计可在30MHz至2700MHz范围内提供良好的回波损耗性能。桥接T匹配的不足之处在于,网络损耗较大。然而,在这些低频下,晶体管拥有较大的增益,可以平衡掉这些损耗,从而使芯片在各种频率下均能无条件保持稳定。因此,对于该工作频率,桥接T是一种非常合适的选择,不会影响性能。

桥接T网络的低频性能在很大程度上取决于并联网络中的阻抗。为了在低频下实现实部阻抗,需要使用一个较大的电容。为此,我们用一个焊盘连接一个片外电容(见图4中的外部电容)。由于MMIC的输入端已匹配至50 Ω,因此,输入网络不需要进行其他匹配。此外,器件在尺寸设计上已在输出端提供近50 Ω的负载线,因此,输出匹配网络只需要一个串联L并联C网络以保障高频性能,然后,在低频下提供50Ω的负载阻抗以保障宽带性能。输入和输出匹配网络都采用了宽带偏置网络,并部署在一块4”×3”的应用板上。

混合式放大器的测量值

我们在一块用Rogers 4350B制成的电路板上对最终器件进行了测试。50Ω匹配输入表现良好,能在40MHz至2.7GHz的范围内实现10dB的回波损耗,在低至30MHz的频率范围内实现7dB的回波损耗(图5)。器件在低频下实现12dB的增益,在高频下实现17dB的增益。

在32V和脉冲条件下,放大器实现了5W的典型输出功率(或者,4W/mm的功率密度),在1至2.7GHz范围内实现45%的功率附加效率(图6)。我们选择了脉冲而非CW工作模式,因为评估板限制了总功耗。另外,我们在1至2.7GHz范围内对数据进行了测量,因为我们无法在1GHz以下构建脉冲试验台。

讨论

结果表明,两款放大器均能在30~2700 MHz范围内工作,二者具有相似的输出功率密度。完全匹配的MMIC在器件尺寸以及输出功率的选择方面表现出较大的灵活性,但其代价也比较大。另一方面,我们展示的混合式解决方案具有较为独特,器件尺寸固定,因此对性能形成了限制;较小或大得多的晶体管都无法在整个带宽范围内取得良好效果。但是,由于芯片尺寸非常小(为MMIC的1/4,但功率仅少一半),因此其代价更能令人接受。另外,最多可以使用两倍周长的晶体管,可实现类似MMIC的性能,芯片尺寸增幅也不大(23%),并且混合式解决方案可使用外部元件进行调整,以在特定频段范围内实现更加优化的性能。然而,MMIC解决方案由于要处理的寄生电容较少,所以可以实现卓越的性能。归根结底,如果系统侧重于打造一种低成本的解决方案,并且可以牺牲一定的性能,则混合式解决方案是更合适的选择。然而,如果系统要求以较高的代价提供特定的性能,则MMIC解决方案是更好的选择。尽管如此,实践表明,两种设计技术都是宽带条件下的有效选择。

 

 

图5:混合MMIC分立式功率放大器的小信号S参数实测值。

 

 

图6:混合式解决方案的实测Pout和漏极效率。放大器驱动至3dB压缩点,所用脉冲宽度为100us,占空比为20%。

结论

本文介绍了两种不同的放大器平台,即全集成式MMIC和混合封装式放大器,两者均可在30 ~2700MHz范围内实现领先的性能。其实现方法是在MMIC上运用行波技术,在混合式设计中,则是运用桥接T拓扑结构使晶体管匹配至50Ω。两种技术各有优点,在性能和成本方面各有折衷。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭