当前位置:首页 > 电源 > 功率器件
[导读]对于一些初次使用雷赛运动控制卡的客户来说,常常会在控制伺服电机时出现一些小问题,以致拖迟客户的发开进度,下面简单介绍一下常出现的3个问题,结合DMC5480控制卡实测的

对于一些初次使用雷赛运动控制卡的客户来说,常常会在控制伺服电机时出现一些小问题,以致拖迟客户的发开进度,下面简单介绍一下常出现的3个问题,结合DMC5480控制卡实测的曲线为例,给出解决办法:

1、脉冲模式匹配问题

伺服驱动器的脉冲模式要与控制卡的脉冲模式保持一致,否则可能导致A.伺服电机只能朝一个方向运动;B.做往返运动时会出现一个方向有累计误差。

DMC5480卡的脉冲模式有6种,其中单脉冲模式(即方向+脉冲模式)4种,如图1所示;双脉冲模式2种,如图2所示。

A、出现伺服电机只往一个方向运动时,排除接线错误后,就有可能是控制卡设置单脉冲模式(双脉冲模式),而伺服驱动器设置成双脉冲模式(单脉冲模式)了,把伺服驱动器和控制卡设置成对应的脉冲模式即可解决该问题。

B、做往返运动时会出现一个方向有累计误差时,是脉冲信号的上升沿或下降沿选择错误,从而导致电机在换向时丢一个脉冲,随着往返次数增加,产生的累计偏差也会越来越大。比如脉冲模式0是上升沿有效,脉冲模式1是下降沿有效,控制卡设置脉冲模式0,而伺服电机的脉冲信号实际上是下降沿有效,从图1可以看出来,换向后控制卡发出的第一个脉冲信号将丢失,因为伺服驱动器接收的脉冲信号是下降沿有效,所以脉冲换向都会丢失一个脉冲信号。双脉冲模式与单脉冲模式的类似,在这不在重复了。

 

 

图1 单脉冲模式

 

 

图2 双脉冲模式

2、正确使用伺服使能SEVON信号

伺服上电后如果SEVON信号无效,伺服电机不会锁死,控制卡发脉冲给伺服,伺服也不会运动,所以伺服电机运动前一定要使能。许多客户可能认为伺服使能信号不重要,因此在实际应用中对该信号不予处理,直接导致设备在开机和关机时的异常响应,从而认为整个控制系统出现问题,通过下面的分析可以帮助大家解惑,希望能让大家对SEVON信号有效的帮助到设备的控制有更好的认识。

由于控制卡是插在PC的PCI插槽上的,由PC供给控制卡一个5V的电源,所以PC在开机和关机时,会有一个0-5V的电压变化的,也就是PC在开机和关机时会有一个等同于脉冲信号的电压变化信号发出来,如下述:

a、脉冲输出模式1时,脉冲结束时脉冲口电平状态如下图3:

 

 

图3 脉冲输出波形图[!--empirenews.page--]

b、电脑关机时电压曲线如下图4:

 

 

图4 断电后脉冲输出口电压变化图

所以在PC关机时,如果伺服的SEVON有效,而且伺服电机的电源没有提前切断,那么由于图4展示的状态,伺服电机会认为有一个脉冲输入,因此会作出响应,从而产生微小的震动,经过对比测试,国外的伺服要比国内的伺服电机的震动要小很多,有轻微动作,但感觉不明显。

解决的办法:利用伺服(步进)驱动器的使能信号,在设备应用软件退出时,取消使能,将伺服(步进)放松;开机时,直到设备应用软件初始化完成,而后启用回零时才进行驱动使能。

3、正确使用伺服报警ALM信号的使用

不同厂家的伺服电机的ALM信号的有效电平也不一样,有高电平有效,也有低电平。伺服电机的ALM信号对与控制卡来说是一个输入信号,它的高低电平是可以设置的,所以要正确设置ALM信号的有效电平,否则伺服电机使能后,还是无法运动。原因就是伺服电机一上电,控制卡便认为伺服电机处于报警状态,软件系统便不会允许脉冲输出,从而导致伺服电机没有动作。

整体而言,对于所有雷赛智能的控制卡(控制器)产品,其实际状况和前面提到的DMC5480配合伺服驱动控制的情况相同。

总结:

综上所述,使用雷赛的控制卡控制伺服电机时,一定要注意脉冲模式的设置,以及伺服的SEVON、ALM等信号的正确使用方法,以避免不必要的麻烦,从而缩短开发周期。

1.VB编程

d1000_start_t_move 0, 6400, 3200, 6400, 0.1

DO

DoEvents

LOOP WHILE (d1000_check_done(0) = 0)

2.VC编程 在VC下编程关键是要解决类似于VB的DoEvnets函数

void DoEvents()

{

static MSG msg;

if( ::PeekMessage(&msg,NULL,0,0,PM_NOREMOVE) ){

::TranslateMessage( &msg );

::DispatchMessage( &msg );

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭