当前位置:首页 > 电源 > 功率器件
[导读]为了降低能源成本,设备设计人员正在不断寻找优化功率密度的新方法。通常情况下,电源设计人员通过增大开关频率来降低功耗和缩小系统尺寸。由于具有诸多优势如宽输出调节范

为了降低能源成本,设备设计人员正在不断寻找优化功率密度的新方法。通常情况下,电源设计人员通过增大开关频率来降低功耗和缩小系统尺寸。由于具有诸多优势如宽输出调节范围、窄开关频率范围以及甚至在空载情况下都能保证零电压开关,LLC 谐振转换器应用越来越普遍。但是,功率 MOSFET 出现故障一直是LLC 谐振转换器中存在的一个问题。在本文中,我们将阐述如何避免这些情况下出现MOSFET 故障。

初级 MOSFET 的不良体二极管性能可能导致一些意想不到的系统或器件故障,如在各种异常条件下发生严重的直通电流、体二极管 dv/dt、击穿 dv/dt,以及栅极氧化层击穿,异常条件诸如启动、负载瞬变,和输出短路。

 

 

图1: LLC 谐振转换器

LLC 谐振转换器中的运行区域和模式

不同负载条件下LLC谐振转换器的直流增益特性如图2所示。根据不同的运行频率和负载条件可以分为三个区域。谐振频率fr1右侧(蓝色部分)为零电压开关区域, 空载情况下最小次级谐振频率 fr2的左侧(红色部分)是零电流开关区域。fr1与fr2之间的区域既可以是零电压开关区域,也可以是零电流开关区域,视负载条件而定。紫色区域标识感性负载区域, 粉色区域标识容性负载区域。对于开关频率 fs

 

 

图2:LLC 谐振转换器的直流增益特性

在导通MOSFET之前,电流流过其他MOSFET的体 二极管。当MOSFET开关导通时,其他MOSFET体二极管的反向恢复应力非常严重。高反向恢复电流尖峰流过其他MOSFET开关,原因是它无法流过谐振电路。它形成高体二极管dv/dt并且其电流和电压尖峰可能在体二极管反向恢复期间造成器件故障。因此,转换器应该避免在容性区域运行。对于 fs>fr1,谐振回路的输入阻抗是感性负载。如图 3 (b) 所示,MOSFET在零电压开关 (ZVS) 处导通。导通开关损耗被最小化,原因是存在米勒效应并且 MOSFET 输入电容不会因为米勒效应而增大。此外,体二极管反向恢复电流是一小部分正弦波,并在开关电流为正时变为开关电流的一部分。因此, 零电压开关通常优先于零电流开关,原因是因反向恢复电流及其结电容的放电,零电压开关能够避免较大的开关损耗和应力 。

 

 

图3:LLC 谐振转换器中的工作模式

LLC谐振转换器中的故障模式

1)启动

在启动期间,由于反向恢复dv/dt,零电压开关运行可能会丢失并且MOSFET可能发生故障。

在启动之前谐振电容和输出电容完全放电。这些空电容导致Q2体二极管进一步导通并且在Q1导通前不会完全恢复。反向恢复电流非常高并且在启动期间足以造成直通问题,如图4所示。

 

 

图4: 启动期间LLC 谐振转换器中的波形

启动期间,推荐用于故障模式的解决方案是:

采用快速恢复MOSFET

减少谐振电容器

控制高侧和低侧MOSFET的驱动信号,从而形成完整的体二极管恢复

2)输出短路

在输出短路期间MOSFET通过极高的电流。当发生输出短路时,Lm在谐振中被分流。LLC 谐振转换器可由 Cr 和 Lr简化为串联谐振回路,因为Cr仅与Lr共振。这种状况通常会导致零电流开关运行(电容模式)。零电流开关运行最严重的缺陷是导通时的硬式整流,可能导致二极管反向恢复应力(dv/dt) 和巨大的电流和电压应力,如图5所示。另外,由于体二极管反向恢复期间的高 di/dt 和 dv/dt,该器件还可能被栅极过压应力破坏。

 

 

图5:输出短路期间LLC 谐振转换器中的波形

启动期间,推荐用于故障模式的解决方案是:

采用快速恢复MOSFET

增大导通电阻以减小反向恢复di/dt和dv/dt、体二极管反向电流(Irm) 和峰值电压Vgs,如图6所示

增加最小开关频率以防止电容模式

在发生输出短路后尽快减少 Vgs关断延迟

减小过流保护电流

 

 

图6:反向恢复期间的导通栅极电阻效应

 

 

图 7.:FRFET (FCH072N60F)和 一般 MOSFET (FCH072N60) 之间的反向恢复特性比较

将一般MOSFET替换为快速恢复MOSFET (FRFET? MOSFET) 非常简单有效,原因是不需要额外电路或器件。图7显示与一般 MOSFET相比, FRFET MOSFET 在反向恢复特性方面的改进。与一般MOSFET (FCH072N60) 相比,FRFET MOSFET (FCH072N60F)的反向恢复电荷减少了90% 。FRFET MOSFET体二极管的耐用性比一般MOSFET好得多。此外,在反向恢复期间若高侧MOSFET从FRFET变为一般 MOSFET,低侧MOSFET的峰值栅源极电压从54V降为26 V。由于改进了这么多特性 ,FRFET MOSFET在LLC谐振半桥转换器中提供更高的可靠性 。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭