当前位置:首页 > 电源 > 功率器件
[导读]CMOS和TTL集成门电路在实际使用时经常遇到这样一个问题,即输入端有多余的,如何正确处理这些多余的输入端才能使电路正常而稳定的工作?一、CMOS门电路CMOS 门电路一般是由M

CMOS和TTL集成门电路在实际使用时经常遇到这样一个问题,即输入端有多余的,如何正确处理这些多余的输入端才能使电路正常而稳定的工作?

一、CMOS门电路

CMOS 门电路一般是由MOS管构成,由于MOS管的栅极和其它各极间有绝缘层相隔,在直流状态下,栅极无电流,所以静态时栅极不取电流,输入电平与外接电阻无关。由于MOS管在电路中是一压控元件,基于这一特点,输入端信号易受外界干扰,所以在使用CMOS门电路时输入端特别注意不能悬空。在使用时应采用以下方法:

1、与门和与非门电路:由于与门电路的逻辑功能是输入信号只要有低电平,输出信号就为低电平,只有全部为高电平时,输出端才为高电平。而与非门电路的逻辑功能是输入信号只要有低电平,输出信号就是高电平,只有当输入信号全部为高电平时,输出信号才是低电平。所以某输入端输入电平为高电平时,对电路的逻辑功能并无影响,即其它使用的输入端与输出端之间仍具有与或者与非逻辑功能。这样对于CMOS与门、与非门电路的多余输入端就应采用高电平,即可通过限流电阻(500Ω)接电源。

2、或门、或非门电路:或门电路的逻辑功能是输入信号只要有高电平输出信号就为高电平,只有输入信号全部为低电平时,输出信号才为低电平。而或非门电路的逻辑功能是输入信号只要有高电平,输出信号就是低电平,只有当输入信号全部是低电平时输出信号才是高电平。这样当或门或者或非门电路某输入端的输入信号为低电平时并不影响门电路的逻辑功能。所以或门和或非门电路多余输入端的处理方法应是将多余输入端接低电平,即通过限流电阻(500Ω)接地。

二、TTL门电路

TTL门电路一般由晶体三极管电路构成。根据TTL电路的输入伏安特性可知,当输入电压小于阐值电压UTH,即输入低电平时输入电流比较大,一般在几百微安左右。当输入电压大于阈值电压UTH时,输入高电平时输入电流比较小,一般在几十微安左右。由于输入电流的存在,如果TT L门电路输入端串接有电阻,则会影响输入电压。其输入阻抗特性为:当输入电阻较低时,输入电压很小,随外接电阻的增加,输入电平增大,当输入电阻大于IKΩ时,输入电平就变为阈值电压UTH即为高电平,这样即使输入端不接高电平,输入电压也为高电平,影响了低电平的输入。所以对于TTL电路多余输入端的处理,应采用以下方法:

1、TTL与门和与非门电路:对于TTL与门电路,只要电路输入端有低电平输入,输出就是低电平。只有输入端全为高电平时,输出才为高电平。对于TTL与非门而言,只要电路输入端有低电平输入,输出就为高电平,只有输入端全部为高电平时,输出才为低电平。根据其逻辑功能,当某输入端外接高电平时对其逻辑功能无影响,根据这一特点应采用以下四种方法:(1)将多余输入端接高电平,即通过限流电阻与电源相连接;(2)根据TTL门电路的输入特性可知,当外接电阻为大电阻时,其输入电压为高电平,这样可以把多余的输入端悬空,此时输入端相当于外接高电平;(3)通过大电阻(大于1kΩ)到地,这也相当于输入端外接高电平;(4)当TTL门电路的工作速度不高,信号源驱动能力较强,多余输入端也可与使用的输入端并联使用。

2、TTL或门、或非门:对于下TTL或门电路,逻辑功能是只要输入端有高电平输出端就为高电平,只有输入端全部为低电平时,输出端才为低电平,TTL或非门电路,逻辑功能是只要输入端有高电平,输出端就为低电平,只有输入端全部为低电平时,输出才为高电平,根据上述逻辑功能,TTL或门、或非门电路多余输入端的处理应采用以下方法:(1)接低电平;(2)接地;(3)由TTL输入端的输入伏安特性可知,当输入端接小于IKΩ的电阻时输入端的电压很小,相当于接低电平,所以可以通过接小于IKΩ(500Ω)的电阻到地。

三、三态门之高阻态的理解

1、高阻态这是一个数字电路里常见的述语,指的是电路的一种输出状态,既不是高电平也不是低电平,如果高阻态再输入下一级电路的话,对下级电路无任何影响,和没接一样,如果用万用表测的话有可能是高电平也有可能是低电平,其电压值可以浮动在高低电平之间的任意数值上,随它后面所接的电路而定。

2、高阻态的实质:电路分析时高阻态可做开路理解。你可以把它看作输出(输入)电阻非常大,极限可以认为悬空(也就是说理论上高阻态不是悬空),它是对地或对电源电阻极大的状态。而实际应用上与引脚的悬空几乎是一样的。当门电路的输出上拉管导通而下拉管截止时,输出为高电平;反之就是低电平;如上拉管和下拉管都截止时,输出端就相当于浮空(没有电流流动),其电平随外部电平高低而定,即该门电路放弃对输出端电路的控制。

3、悬空(浮空,floating):就是逻辑器件的输入引脚即不接高电平,也不接低电平。由于TTL逻辑器件的内部结构,当它输入引脚悬空时,相当于该引脚接了高电平。一般实际运用时,引脚不建议悬空,易受干扰。对于TTL或非门接地处理,对于TTL与非门可以悬空或接高电平。至于COMS不能悬空,那是因为COMS的栅极和衬底是被二氧化硅隔开,它比较脆弱,只能承受几百伏的电压,而静电能达到上千伏,COMS悬空时电压为VDD/2。

4、由于TTL集成电路的低电平驱动能力比高电平驱动能力大得多,所以常用低电平有效OC门输出的七段译码器来驱动。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭