当前位置:首页 > 电源 > 功率器件
[导读]超低功率微控制器的近期发展造就了具有空前集成度的器件 (对于其运作所需的功率而言)。这些器件是片上系统,采用了新锐节能方案 (例如关断空闲功能电路的供电)。事实上,运行这些器件所需的功率非常之低,以至于许多传感器逐步实现了无线化,因为它们可以方便地通过电池来供电。

引言

超低功率微控制器的近期发展造就了具有空前集成度的器件 (对于其运作所需的功率而言)。这些器件是片上系统,采用了新锐节能方案 (例如关断空闲功能电路的供电)。事实上,运行这些器件所需的功率非常之低,以至于许多传感器逐步实现了无线化,因为它们可以方便地通过电池来供电。不幸的是,电池必须定期更换,这种维护工作既费钱又费事。而从传感器的局部环境中采集环境机械能、热能或电磁能则有可能是一种更为有效的无线电源解决方案。

图 1 所示的 LTC3588-1 是一款完整的能量收集解决方案,专为诸如压电传感器等高阻抗源而优化。它内置了一个低损耗全波桥式整流器和一个高效率同步降压型转换器,用于将能量从一个输入存储器件传输至输出,以产生一个可支持高达 100mA 负载的稳定电压。LTC3588-1 采用 10 引脚 MSE 封装和 3mm x 3mm DFN 封装。

图 1:专为诸如压电传感器等高阻抗源而优化的完整能量收集解决方案

环境能量源

环境能量源包括光、温差、振动梁、射频 (RF) 发射信号或任何其他能够通过某种换能器产生电荷的信号源。例如:

· 人们采用小型太阳能电池板为手持式电子设备供电已有多年,此类电池板在阳光直射和间接光照射的情况下能够分别产生几百 mW/cm2 和几百 μW/cm2 的功率密度。

· 当存在温度梯度时,塞贝克 (Seebeck) 器件可将热能转换为电能。热能量源多种多样,从体热 (可产生几十 μW/cm2 的功率密度) 到锅炉排气烟囱 (其表面温度能产生几十 mW/cm2 的功率密度) 各不相同。

· 压电器件可通过器件的压缩或弯曲而产生能量。压电组件能够产生几百μW/cm2 的功率密度 (取决于其尺寸和结构)。

· 射频 (RF) 能量收集由天线来完成,可产生几百 pW/cm2 的功率密度。

要成功地设计完整的独立型无线传感器系统,就需采用节能型微控制器和传感器,它们消耗极少电能,并可从低能量环境获取能量。目前,这两类器件在市面上都很容易获得,而所缺失的一环则是能够将传感器输出转换为一个可用电压的高效功率转换产品。

图 2 示出了一款能量收集电源系统,它包括能量源 / 传感器、一个能量储存组件和一种用于将该储能转换为一个可用稳定电压的设备。另外,在换能器和能量储存组件之间或许还需要布设一个电压整流器网络,用于防止能量回馈至传感器中,或在采用压电器件的情况下负责对 AC 信号进行整流。

图 2:能量收集系统组件

应用实例

对于在 D0 和 D1 输入引脚上设定的特殊输出电压,LTC3588-1 要求传感器的输出电压高于欠压闭锁上升门限限值。为了实现能量传输的最大化,换能器必须具有一个两倍于输入工作电压的开路电压、以及一个两倍于所需输入电流的短路电流。这些要求必须在信号源的最小激励电平条件下满足,以实现连续输出功率。

压电传感器应用

图 3 示出了一个压电系统。当被置于气流之中时,该系统可在 3.3V 电压条件下产生 100μW 的功率。在 50Hz 频率下,压电组件的弯曲量为 0.5cm。

图 3:压电式能量收集器

Seebeck 传感器应用

图 4 示出了一个能量收集系统,该系统采用了由 Tellurex 公司提供的 Seebeck 传感器。温差产生了一个可支持 300mW 输出负载的输出电压。把传感器连接至 PZ1 输入可防止反向电流在热源被拿掉时回流至 Seebeck 器件中。100Ω 电阻器负责提供电流限制,以保护 LTC3588-1 输入桥接器。

图 4:Seebeck 能量收集器

由标准荧光灯产生的 EM 场收集能量

此项应用需要一些有别于传统的创造性思维。图 5 示出了一个从高电压荧光灯管周围的电场收集能量的系统。两块 12” x 24” 铜板被放置在距离一个 2’ x 4’ 荧光灯具 6” 的地方。铜板以容性的方式从周围的电场采集了 200μW 的功率,而 LTC3588-1 则负责将该功率转换为一个稳压输出。

图 5:电场能量收集器

结论

LTC3588-1 通过从周围环境收集环境能量而使远程传感器能够不依靠电池来运作。该器件包含了所有关键的电源管理功能:一个低损耗桥式整流器、一个高效率降压型稳压器、一个负责接通和关断降压型转换器的低偏置 UVLO 检测器、以及一个用于在电源可用时唤醒微控制器的 PGOOD 状态信号。LTC3588-1 仅利用 5 个外部组件即可支持高达 100mA 的负载。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭