当前位置:首页 > 电源 > 功率器件
[导读]运算放大器是直流耦合高增益电子电压放大设备,通常具有差动输入和单端输出。一些理想的运算放大器配置通常假设回馈电阻具有完美的匹配特性,但实际上电阻的非理想因素会影

运算放大器是直流耦合高增益电子电压放大设备,通常具有差动输入和单端输出。一些理想的运算放大器配置通常假设回馈电阻具有完美的匹配特性,但实际上电阻的非理想因素会影响各种电路参数,例如共模抑制比、谐波失真和稳定性。

运算放大器是直流耦合高增益电子电压放大设备,通常具有差动输入和单端输出。在该配置里,运算放大器产生了一个输出电位(相对于电路接地),远大于输入终端间的电位差。一些理想的运算放大器配置通常假设回馈电阻具有完美的匹配特性,但实际上电阻的非理想因素会影响各种电路参数,例如共模抑制比,谐波失真和稳定性。

精密放大器和模拟数字转换器的实际表现常不能达到理想值的水平,因为电子组件并非其规格书上所描述的那么完美。因此,审慎选择电阻将是决定放大器、转换器等组件性能是否能如预期般发挥的关键。经过匹配的网络电阻精确度远远优于未匹配的分立电阻,保证电阻性能如规格书上描述,可以适用于精密集成电路。

应用差动放大器 电阻精准匹配不可少

在电源方案单片集成电路的设计中,我们通常的做法是尽可能准确匹配内部组件。例如,运算放大器的输入晶体管需要精确匹配来提供低补偿电压。如果我们一定要在运算放大器中使用分立晶体管,便须将补偿电压控制在30mV或以上,并准确匹配片内电阻。

整合差动放大器充分利用了精密片内电阻的匹配和激光调阻技术(图1、图2)。这些整合组件的极佳共模抑制表现取决于精心设计的集成电路的准确匹配和温度跟踪。

 

 

图1 反向运算放大器配置

 

 

图2 差动放大器电路示意图与输出等式

最终的跟踪增益通过使用密封封装的配对(1:1比例)电阻来实现。这些超精密电阻的温度飘移在热端或冷端仅0.05ppm/℃,两相邻电阻的跟踪温度飘移低于0.1ppm/℃。为了实现最佳的跟踪参数,必须使用具有极低绝对温飘(超精密电阻一大特性)的电阻,可以避免温度差造成的阻值漂移。

多种差动电路的性能都取决于匹配电阻的性能。任何的不匹配都会造成共模误差。共模抑制比是这种电路的一个重要衡量标准,因为它代表的是有多少冗余共模信号将在输出端出现。电路中的共模抑制比可以透过以下公式得到:

CMRR=1/2(G+1)/ΔR/R

G为增益放大系数,R为阻值,单位是奥姆。

在差动放大器中使用高匹配度的精密电阻是至关重要的,特别是在一些精密的医疗设备中,如电子扫描显微镜、血细胞计数仪和体内诊断探针。

放大器搭配信号转换器 精密电阻不可或缺

惠斯通电桥(或单臂电桥)电路应用非常广泛,如今在现代运算放大器中,我们可以将惠斯通电桥电路与各种传感器连接。不同于将一个未知阻值与已知阻值相比,惠斯通电桥在电路中有很多用法。惠斯通电桥电路就是在电源端和接地间两个简单的电阻串并联,当电桥达到平衡时两个并联分路间产生零压差。

惠斯通电桥有两个输入端和两个输出端,包括如图3中四个排列如钻石形状的电阻。这是典型的惠斯通桥的画法。当与运算放大器一起使用时,惠斯通桥可用于测量和放大阻值的轻微变化。使用超精密电阻令电桥平衡比使用常规的薄膜电阻要精确的多。因为四个电阻都是主动的,它们的匹配和稳定性对于电桥平衡起着至关重要的作用。

 

 

图3 惠斯通电桥差动放大器

平衡后的惠斯通电桥差动放大器可用于发电厂智慧电网的测量。也可用于太阳能转换器,它的工作效率直接取决于使用高稳定性电阻的电桥平衡性。

放大器超精密电阻 携手实现理想传感器界面

精密低噪的运算放大器通常用于将传感器(如温度、压力、光)发出的讯号放大,随后再将讯号送入模拟数字转换器。在这类应用情况下,放大器的输入补偿电压和输入电压噪声参数对系统分辨率高低起着决定性作用。超精密电阻具有低补偿和低噪声的特性,可以让放大器成为理想的传感器接口(图4)。

 

 

图4 以运算放大器作为传感器接口

超精密电阻也非常适用于数字模拟转换器的输入端(图5)。数字信号通过匹配的超精密电阻制造更低的噪声,减少输出模拟信号的失真。金属箔技术的噪声水平为-40dB,使得箔技术电阻成为高端音讯模数转换和数模转换电路中参照电阻和增益电阻的理想选择。低噪运算放大器在航空电子、军工、航天领域的射频干扰设备中起着决定性作用,包括陀螺仪、GPS芯片控制放大器和天线定向控制单元。

 

 

图5 以精密电阻做为数字模拟转换器的输入端

电阻特性攸关运算放大器应用电路效能

运算放大器是许多电路设计都会使用到的组件,其实际性能表现往往与电阻的特性密切相关。本文以几种常见的运算放大器应用为例,解释电阻的特性如何影响运算放大器性能表现。当应用开发者进行相关电路设计时,应特别注意电阻的匹配与电阻本身的稳定性,以确保电路的性能表现能合乎预期。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭