当前位置:首页 > 电源 > 功率器件
[导读]开头讲个有关 大端小端的故事:端模式(Endian)的这个词出自Jonathan Swift书写的《格列佛游记》。这本书根据将鸡蛋敲开的方法不同将所有的人分为两类,从圆头开始将鸡蛋敲开

开头讲个有关 大端小端的故事:

端模式(Endian)的这个词出自Jonathan Swift书写的《格列佛游记》。这本书根据将鸡蛋敲开的方法不同将所有的人分为两类,从圆头开始将鸡蛋敲开的人被归为Big Endian,从尖头开始将鸡蛋敲开的人被归为Littile Endian。小人国的内战就源于吃鸡蛋时是究竟从大头(Big-Endian)敲开还是从小头(Little-Endian)敲开。在计算机业Big Endian和Little Endian也几乎引起一场战争。

我们知道在内存中数据是以字节为单位进行存储的,每个地址单元对应着一个字节(byte),一个字节为8位(bite)。但是很多时候数据除了8bit额char外,还有16bit的short,32位的long型(要看具体的编译器),必然存在多字节安排的问题。不同的计算机存放多字节值的顺序不同,有些机器在起始地址存放低位字节(低位先存),即小端模式;有的机器在起始地址存放高位字节(高位先存),即大端模式。基于Intel的CPU,采用的是低位先存。而KEIL C51则为大端模式。大端小端对应着数据在存储器中的存放顺序。

同时,在网络传输中,网络协议需要指定网络字节顺序,TCP/IP协议中使用16位整数和32位整数的高位先存模式,对应我们的大端模式。

下面是两个具体例子:

16bit宽的数0x1234在Little-endian模式(以及Big-endian模式)CPU内存中的存放方式(假设从地址0x4000开始存放)为:

 

 

32bit宽的数0x12345678在Little-endian模式以及Big-endian模式)CPU内存中的存放方式(假设从地址0x4000开始存放)为:

 

 

联合体union的存放顺序是所有成员都从低地址开始存放,利用该特性可以轻松地获得了CPU对内存采用Little-endian还是Big-endian模式读写。

写程序判断处理器是Little-endian模式,还是Big-endian模式,可以通过以下程序:

1、通过将int强制类型转换成char单字节,通过判断起始存储位置。

1 void main(int argc, char **argv)

2 {

3 int i = 1;

4 char *cp = (char *)&i; //前面是指针运算符*,前值类型转换。后面是取地址符号。

5 if (*cp) //如果此时cp指向的内存为1的话,则为小端,否则为大端。

6 printf("Little Endiann");

7 else

8 printf("Big Endiann");

9

10 exit(EXIT_SUCCESS);

11 }

注释:如果小端方式中(i占至少两个字节的长度)则i所分配的内存最小地址那个字节中就存着1,其他字节是0.大端的话则1在i的最高地址字节处存放,char是一个字节,所以强制将char型量p指向i则p指向的一定是i的最低地址,那么就可以判断p中的值是不是1(或者为0,也即是假)来确定是不是小端。

或者如下程序:

void main()

{

short int x;

char x0,x1;

x=0x1122;

x0=((char*)&x)[0]; //低地址单元

x1=((char*)&x)[1]; //高地址单元

if (0x11 == x0 && 0x22 == x1)

{

cout << "Big_endian" << endl;

}

else

{

cout << "Little_endian" << endl;

}

}

2、利用联合体union的存放顺序是所有成员都从低地址开始存放,判断处理器模式。

bool checkCPU( )

{

{

union w

{

int a;

char b;

} c;

c.a = 1;

return(c.b ==1);

}

}

以及如下程序:

bool isLittleEndian()

{

union _dword

{

int all;

struct _bytes

{

char byte0;

char pad[3];

}bytes;

}dword;

dword.all=0x87654321;

return (0x21==dword.bytes.byte0);

}

分析:如果你的处理器调用函数isLittleEndian返回1,那么说明你的处理器为little endian,否则为big endian.注意,如果在little endian处理器上,byte0和pad按内存从低到高的存放顺序:LOW->byte0 pad[0] pad[1] pad[2] ->HIGH;0x87654321按内存从低到高的存放顺序: 0x21 0x43 0x65 0x87, 可见byte0对应到0x21。所以通过判断dword中第一个字节dword.bytes.byte0是否与0x21相等就可以看出是否是little endian。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭