当前位置:首页 > 电源 > 功率器件
[导读]模数转换器(ADC)中集成的缓冲器和放大器通常是斩波型。因为与其他工艺(如双极性工艺)相比,CMOS晶体管噪声高,难以匹配。这种斩波技术可以用来最大程度地降低放大器的失调和

模数转换器(ADC)中集成的缓冲器和放大器通常是斩波型。因为与其他工艺(如双极性工艺)相比,CMOS晶体管噪声高,难以匹配。这种斩波技术可以用来最大程度地降低放大器的失调和闪烁噪声(1/f)。在斩波转换过程中,开关的电荷注入会引起电流尖峰,进而使施加于ADC输入端的电压产生方向不定(流入和/或流出)的下降或尖峰。压降与连接到ADC输入段的传感器的输出阻抗成比例。

简介

模数转换器(ADC)中集成的缓冲器和放大器通常是斩波型。有关这种斩波实现的例子,可参见AD7124-8 和AD7779数据手册。需要这种斩波技术来最大程度地降低放大器的失调和闪烁噪声(1/f),因为与其他工艺(如双极性工艺)相比,CMOS晶体管噪声高,难以匹配。通过斩波,放大器的1/f和失调转换到较高频率,如图1所示。

 

 

图1.闪烁噪声(1/f)与斩波

在斩波转换过程中,开关的电荷注入会引起电流尖峰,进而使施加于ADC输入端的电压产生方向不定(流入和/或流出)的下降或尖峰。压降与连接到ADC输入段的传感器的输出阻抗成比例。

平均电流值

一般而言,数据手册不会提供电流峰值,因为它难以测量,而且不会增加任何有意义的信息。该信息之所以无意义,是因为缓冲器的斩波频率高于ADC的输入信号带宽。因此,输入引脚上添加的低通滤波器(用来消除高于奈奎斯特频率的频率或信号音,或用来降低耦合噪声)会对峰值电流进行平均,如图2所示。

 

 

图2.输入电流与时间的关系

用电流表测量输入电流,一端连接到VDD/2,另一端连接到ADC的模拟输入引脚。

如果电流表连接到其中一个电压轨,由于输入电压裕量的关系,测得的电流可能高于数据手册中的规格值。

输入电流与输入阻抗的关系

输入阻抗规格对精确计算直流误差没有帮助,因为与ADC内部输入阻抗引起的负载效应相比,输入偏置电流是最主要的贡献因素。

有两个规格与输入偏置电流相关:绝对电流和差分电流。

绝对值(IABSOLUTE)是在任意模拟输入引脚测得的输入电流。差分输入电流(IDIFFERENTIAL)是在模拟输入引脚对之间测得的电流差。这仅适用于差分输入ADC。

如何计算直流误差

输入电流产生一个失调电压(VOFFSET),后者与连接到输入引脚的阻抗直接相关。

如图3所示,产生的失调电压一般为:

 

 

图3.漏电流引起的压降

如果用运算放大器等低阻抗源驱动模拟输入引脚,误差将不很明显。ADC测得的误差取决于施加的输入信号类型,例如是真差分输入信号还是伪差分/单端输入信号。对于真差分输入信号,假设输入电阻(R)完全匹配,那么ADC测得的误差将是由模拟输入引脚对之间的差分输入电流引起,如下式所示:

其中,VADC为ADC输入电压。

 

 

图4. 差分输入ADC

如果电阻不是完全匹配,则在差分输入电流贡献之外,电阻不匹配也会产生一个误差。一般而言,假设电阻容差为1%,那么最差情况下的失调电压定义如下:

对于伪差分/单端输入信号,有两种情况:

一个模拟输入连接到低阻抗源(参见图5)。误差定义为:

 

 

图5. 伪差分/单端ADC

两个输入均连接到高阻抗源(参见图6)。误差与使用真差分信号的情况相同。

 

 

图6. 伪差分ADC

交流误差

交流分量与输入阻抗规格直接相关。输入阻抗可以是阻性或容性。若输入阻抗为容性,则给定频率下的阻抗计算如下:

其中:

Zc为输入阻抗。

CIN为数据手册给出的输入电容。

fIN为输入频率。举个例子,假设有8 pF电容和1 kHz输入带宽,则最小输入阻抗约为20 MΩ。

误差最小化

为使低通滤波器中电阻不匹配引起的误差最小,最好使用小电阻和大电容,因为电阻产生的失调和约翰逊噪声较低。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭