当前位置:首页 > 电源 > 功率器件
[导读]在目前市面上的NTC的经典模型中,温度仿真是使用嵌入式TEMP变量。这对研究电路在外部环境温度变化时的一般响应十分理想,但对评价传感器对规定动态温度曲线的响应却不再有效

在目前市面上的NTC的经典模型中,温度仿真是使用嵌入式TEMP变量。这对研究电路在外部环境温度变化时的一般响应十分理想,但对评价传感器对规定动态温度曲线的响应却不再有效。在温度调节应用中,瞬间状态在电路设计中扮演着重要角色。例如,PID稳压器的行为可能非常依赖于传感器的热惰性或响应时间。

为解决该问题,我们提出了一个新的模型,它使用的是连接至外部电压的第三虚拟引脚处的温度。对仿真而言,按照用户的应用需求,这个外部电压代表的动态温度。用户因此能够通过改变该外部电压来随意改变热敏电阻器温度。

以图1上的电容器C(通过连接至固定电压V2的固定电阻器R2充电)的指数式变化电压为例。当我们将该等电压连接至热敏电阻器模型的第三引脚Tin时,图2的仿真代表受到温度阶跃影响的热敏电阻器的温度变化。固定电阻器R2值代表热敏电阻器的响应时间,电容器的规定初始电压代表初始热敏电阻器温度。二者均可由用户调节。R2值范围这里是1秒至10秒。

 

 

图1

采用温度驱动NTC热敏电阻器的分压器桥电路(温度阶跃为25°C至85°C)

 

 

图2:仿真结果:上方是热敏电阻器电压V(NTC)/下方是热敏电阻器温度V(Tin)

对于复杂性增加,这个例子中的固定电压可用描述在应用中测得的温度曲线的正弦波或分段线性电压(带文件)代替。热敏电阻器将遵循该曲线,延迟由RC网络确定。

在温度调节领域进一步发展该应用,温度驱动/电压驱动式模型可连接至由应用电路本身产生的电压。该电压必须代表由应用产生的相等温度。本例中构建了一个温度反馈回路来调节应用中的温度。

这个模型的一个实际用例是热电冷却器控制器的仿真,其中NTC反馈到电源来调节温度。使用电压控制热敏电阻器,可用传递函数来仿真冷却/散热器和负载组合,并通过电压将温度反馈给NTC。

另一个例子是温度-速度测量(thermo-velocimetric)火警探测器,其中使用热敏电阻器温度的上升速度来开关控制晶闸管的Schmitt触发器运放。临界温度曲线(速度上升)可记录在一个文件中,作为文本文件包含于仿真,并用于热敏电阻器的虚拟温度引脚。

通常,所提供的模型可用于任何温度调节检测、控制,或者用于可以仿真最终温度并反馈到NTC热敏电阻器,以便调节温度的调节过程。例如,目前已能够根据温度传感器的温度响应,实时调整PID温度控制器的比例、微分和积分常数。

所提供的热敏电阻器模型是在六个不同电子仿真器中提供的,因为语言语法因仿真器的不同而异。这些仿真器按字母顺序排列如下:

- Altium Designer 16.1

- Cadence? OrCAD? 16.6(也经过17.2版本的测试)

- LTspice IV(也经过LTspice XVII 64位版本的测试;不推荐LTspice XVII 32位版本)

- NI的 Multisim 14.0(有针对Multisim Blue的单独版本)

- SIMetrix/SIMPLIS 7.20k

- Tina-TI version 9

这些仿真在所有这些仿真器中都基于相同的原理并可立即使用。三引脚热敏电阻器模型包含典型的感测电路,包括分压器桥电路在内。第三(仅为仿真)引脚通过RC电路(其RC常数是热敏电阻器的响应时间)连接至固定电压源。

根据每个软件的可用特性(分段线性电压源、分段线性电压文件等)可进一步发展该电路。重要的是应当注意,与电压驱动/温度驱动式热敏电阻器模型相关联的所有导入问题都已解决,无需用户再费时费力,用户将能把注意力完全集中于其自己的应用。

该NTC热敏电阻器SPICE模型的原始建模是在LTSpice IV中进行的。另外,除了一个用于热敏电阻器的更复杂热传递函数外,还有包括蒙特卡罗法容差和最坏情况分析的更多精致模型可用。欲知有关本文所述模型和仿真的更多信息,请发送电子邮件至。

作者:Alain Stas, Vishay Intertechnology非线性电阻器产品营销工程师

Alain Stas现任Vishay非线性电阻器产品营销工程师,此前在布鲁塞尔自由大学(ULB)研究生物技术过程的数学建模。Alain拥有布鲁塞尔自由大学物理学和土木工程理学硕士学位,专业是固态电子学。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭