当前位置:首页 > 电源 > 功率器件
[导读]第一章 电阻器的功率电阻器的额定功率定义为在指定环境温度下,假设空气不流通,电阻器连续正常工作允许消耗的最大功率。其中指定环境温度一般为25℃、70℃、125℃。需要特

第一章 电阻器的功率

电阻器的额定功率定义为在指定环境温度下,假设空气不流通,电阻器连续正常工作允许消耗的最大功率。其中指定环境温度一般为25℃、70℃、125℃。需要特别指出的是,电阻器连续正常工作指的不仅是电阻器不损坏,且要电阻器的阻值变化在允许范围内。

通常我们用降功耗曲线来描述电阻器的功率和环境温度的关系。环境温度越高,电阻器散热能力受到限制越大,功率也随之变小。当环境温度达到极限时,电阻器失去散热能力,其功率降为零。

第二章 功率电阻的分类

通常一个具有较高额定功率的电阻器可被称为功率电阻。按照不同的功率级别分为小功率电阻和大功率电阻。根据材料和工艺的不同,功率电阻主要分为三类:线绕功率电阻,膜式功率电阻,实心陶瓷电阻。

线绕功率电阻是最常见的功率电阻,线绕电阻通常都是在陶瓷绝缘基体上绕制电阻丝制成,其特点是工艺简单,价格经济,单个电阻功率可达3KW以上。缺点是体积笨重,有电感,可靠性差,质量参差不齐。以下为几种常见的线绕功率电阻:

 

 

膜式功率电阻主要指厚膜技术的平面功率电阻,通常是基于氧化铝或氮化铝基板印刷厚膜电阻浆料,这类电阻的功率密度很高,且无感无容,非常适合在空间有限但散热条件良好的场合使用。另外相比较线绕电阻膜式电阻的阻值范围更宽,从毫欧到兆欧均可提供。膜式电阻也有缺陷,第一是过载能力有限,在放电电路等高能脉冲应用中容易损坏,所以可靠性不高。另外就是膜式电阻对散热条件要求很高,必须加配合适的散热器才能达到额定功率。开步电子推出基于功率薄膜技术的平面功率电阻,在功率密度上完全和厚膜电阻一致,且提高了电阻的可靠性和稳定性。以下为常见的几种基于功率薄膜技术的平面功率电阻。

 

 

实心陶瓷电阻的制作工艺完全不同于线绕电阻和平面功率电阻。粉状的电阻材料混合后,经成型、高温烧结、电极处理、最后封装测试后制成。实心陶瓷电阻和线绕电阻及膜式平面功率电阻的最大区别在于其通体导电,所以能承受高能高脉冲冲击,非常适合用于能量泄放,如电容器充放电等场合。实心陶瓷电阻无感,可靠性极高,根据不同的应用分为功率型和脉冲型两种。

第三章 功率电阻的选型过程中常见误区

(1)要区别高功率和高脉冲的应用。

在很多应用场合中,如电池组预充电,电容充放电,启动限流,电弧保护等应用中,电阻并不需要在大功率下长时间连续工作,而是需要承受一个或多个周期性的脉冲能量,最适合这种应用场合的是高能抗脉冲类型的电阻,而不是大功率电阻。当然,选择一个足够大功率的电阻也可能会满足这类需求,但潜在的风险依然存在。比如,大功率线绕电阻只有电阻合金丝是导电的部分,这些电阻合金丝的重量相对于整个电阻器而言只占很少的一部分,在受到短时高脉冲冲击的时候,热量没有时间通过绝缘基体和辅助散热器传导出去,所以这些很细的电阻丝本身需要承受一个脉冲能量,这可能导致电阻直接损坏或发生潜在的风险。很多线绕电阻并不是为高能高脉冲场合设计的,所以在材料和工艺上并没有考虑到实际的脉冲负荷,一旦应用于脉冲电路很容易发生故障。目前最流行的高能电阻是无感实心陶瓷电阻,这种电阻在高能抗脉冲的应用中,相比较线绕电阻节约90%以上的空间,同时可靠性提高10倍以上。

 

 

(2)不重视散热设计,功率空间预留过度或不足。

在第一章中我们有讲到,电阻器的功率就是它的散热能力。而电阻器的散热能力可以通过合理的散热设计来加以提升,比如合理的布局,加装散热器,风冷,水冷,油冷散热等。有些电阻尤其是平面功率电阻严重依赖于散热器,一个TO220封装的平面功率电阻,在加装合理散热器的情况下其额定功率可达50W,但在不加散热器的情况下其功率只有1.5W。

 

 

大部分的工程师都会降额使用功率电阻,依据军标,通常降额一半,有些时候为了降低发热甚至需要进一步的降额使用。但降额多少必须结合工作环境和散热条件来考虑,比如一个额定功率为750W的功率电阻在受到临近电阻发热影响时其功率可能降低到500W,而通过风冷散热(风速150米/分钟)则可以把功率提升至1000W。

当电阻需要加装散热器才能达到标称额定功率时,一般规格书上都会标明加配散热器时的功率和不加配散热器时的功率。在进行功率电阻选型时一定要注意这些区别。

(3)对线绕电阻存在的电感估计不足

众所周知,线绕电阻的最大缺陷就是存在电感,通过无感绕组的方法可以得到一个低电感的线绕电阻,但也并非完全无感,在频率为几百赫兹的电路中可以忽略这些电感。但在广播通讯设备等的高频负载中就不能再使用线绕电阻了。膜式平面功率电阻和实心陶瓷电阻都可以提供无感的特性,这些电阻的寄生电感低至nH级别,例如开步电子出品的TO220封装的平面功率电阻其串联电感低于10nH。在高频高脉冲的应用中,不但要求电阻具有无感的特性,同时也要求电阻具有高能抗脉冲的特性,如成本允许,实心陶瓷电阻最为合适。

(4)选择合适的精度

本文我们仅讨论非精密应用的功率电阻。在选择功率电阻的时候,虽然精度对于大多数的应用并不是很重要的指标,但精度绝不是随意确认的。通常我们建议综合考虑初始精度和寿命末期的飘移,然后就宽原则选择精度。精度就宽原则不仅有利于节约成本,更重要的是可以提高电阻的可靠性,尤其是对于膜式电阻。这是因为要达到一个较高的精度,膜式电阻都要进行调阻,而调阻的过程会对电阻层产生伤害,会损失电阻的额定能量,降低电阻的过载能力。有些线绕电阻制造商会通过打磨线材来达到调阻的目的,这种做法会使该电阻的过载能力至少降低一半。所以功率电阻的精度选择请遵循就宽原则,例如当综合评估后±10%的精度可以满足要求,就没有必要选择±5%或者±1%的精度。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭