当前位置:首页 > 电源 > 功率器件
[导读]1、超级电容电压均衡模型采用的超级电容电压均衡模型为四个超级电容B1~B4串联的多重SEPC斩波电路,如图1所示,主要由电容Ca、电L、开关Q以及C、L、D(F1…:4)组成,其

1、超级电容电压均衡模型

采用的超级电容电压均衡模型为四个超级电容B1~B4串联的多重SEPC斩波电路,如图1所示,主要由电容Ca、电L、开关Q以及C、L、D(F1…:4)组成,其中电容C向整个电路供电,不需要外接电源。在该均压模型中,只有一个开关器件Q,明显简化了电路的拓扑结构,且开关Q接地,不需要浮动栅极驱动IC,电路驱动简单。此外,在均压过程中,开关占空比恒定,不需要检测串联超级电容器的单体电压。即当电路工作在DCM模式时,系统不需要反馈控制环节,这样可以降低系统的控制难度。

 

 

2、多重SEPC斩波电路均压原理分析

2.1均压原理

多重SEPIC斩波电路在CCM模式和DCM模式下的作原理与传统的SEPC斩波电路相同。超级电容B1~B4的电压分别为v~V,假设在电压不平衡时V2《vAF1,3,4),此时电路的工作波形及电流方向分别如图2、图3所示。

 

 

超级电容B1~B4向多重SEPC斩波电路提供能量,在开关Q导通阶段,电感L、L~L上的电流增大,电感储存一定的能量,电流通过电感L~L4和电容C1~C4流向开关Q。在开关Q关断阶段,电感中存储的能量优先分配给电压最低的超级电容B2,二极管D2导通。由于二极管D~D4与电感超级电容B2,二极管D2导通。由于二极管D~D4与电感波电流过。当二极管D2上的电流降为零时,电路中的电流波电流流过。当二极管D2上的电流降为零时,电路中的电流恒定不变。随着能量的分配,串联超级电容器的单体电压逐渐达到均衡状态,此时电感L~L4、电容C~C4以及二极管D~D4上的电流波形分别一致。

在均压过程中,由于电感L~L上的平均电压为零,所以电容C1~C4上的平均电压Vc1~Vc4的值。

 

 

 

 

 

 

当超级电容B2上的电压V2和系统输入电压v的变范围已知时,占空比D就为固定值,且满足关系式(5)。此时从式(16)可知,只要电压V恒定,电流L就恒定。又根据式(4),D的变化范围由已知的电压V2和v=决定。综上所述,如果占空比D电压v以及D的值固定或者变化范围已知,式(14)、(15)可得出,二极管D2上的电流l就在有限范围内变化。这样,均压模型在DCM模式下就可以把超级电容器B2上的电流l限制在理想值使其电压达到均衡状态,而不需要反馈控制环节。

2.2均压时间

图4为四个超级电容B1~B4串联后的基于多重SEPIC斩波电路的均压示意图。首先,串联超级电容器的部分能量被多重SEPC斩波电路吸收,然后再被优先分配给电压较低的超级电容,而电压最高的超级电容则不会被分配到能量,这样随着能量的分配,图4中的电压差△V就会逐渐减小并消失。

 

 

 

 

 

 

3、实验测试

采用的电压均衡策略无反馈控制环节,因此在实验测试时要用信号发生器(AFG3022B)产生选通信号,且开关频f200kHz,占空比D恒为0.14。均压模型中的元器件型号及参数如表1所。

 

 

为了测量系统在均压过程中的能量转换效率,将四个超级电容器串联起来进行实验,其电路结构如图5(a)所示。由于系统中的电流方向根据超级电容器的电压不均衡情况而变化,所以在输出端口串联一个可变电阻,通过改变电阻的大小来模拟电流的流动方向。图5(b)给出了四个开关S1S2S3、S分别接通时系统的能量转换效率,其中串联超级电容器单体电压V的变化范围为1.0~2.5V,系统的总输入电压v7.0V,总输入电流L大约为0.21A,公式(16)。可见,当开关S1接通时,即超级电容B1的电压不均衡时,系统的能量转换效率最低,这是因为此时系统的输出电压最小,器件C1、D1、L上的焦耳损失较大。而开关S4接通时,系统的能量转换效率高达82%。

 

 

 

 

利用本文的均压策略测试系统的均压效果。四个超级电容器的初始电压分别为1.0、1.5、2.0、2.5V。在均压过程中,电压最低的超级电容器B1优先分配到能量,因此在实验最开始只有B1有电流流过,其它的超级电容器没有电流流过。当V超过V时,B2开始有电流流过,V2逐渐上升,大约25min串联超级电容器的单体电压达到均衡状态。根据式(19),计算出理论均压时间T为24min,与实验结果基本相符。均压过程示意图如图6所示,电压标准误差最后减小到1mV。

4、仿真结果

仿真过程采用MATLAB神经网络工具箱进行仿真,具体数据如下:采样周期为一天中的24h,学习率10%,训练时间为50s,训练误差为0.01,隐含层和输出层神经元传递函数分别为tansig和purelin,网络算法采用Levenberg-Marquard算法trainlm。对设置好的网络进行训练,并对结果进行仿真,绘制输出曲线,如图5所示。

 

 

从图5中可知,经过训练的曲线与理想输出曲线很接近说明经过训练后,BP网络对MPPT有很好的跟踪效果,且逼近时间短,非线性跟踪能力强。

5、结论

采用一种基于多重SEPIC斩波电路的电压均衡策略,电路中只有一个开关器件Q,很明显地简化了电路结构,且当系统工作在DCM模式时,开关频率和占空比固定,不需要反馈控制环节,降低了控制难度。通过举例串联超级电容器的电压不平衡V2《V户1,3,4),分析了系统在DCM模式下的电压均衡原理,并推导出均压时间。最后将四个超级电容器串联起来进行实验测试,从图5(b)、图6中可见,此电压均衡策略的均压时间短且能量转换效率高,具有较高的应用价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭