当前位置:首页 > 电源 > 功率器件
[导读]数码管是单片机系统中经常用到的显示器件, 从内部结构上可以分为共阴极和共阳极数码管。对不同的数码管,电路的接法也不一样。图1A为数码管的结构图。以共阳极数码管为例,

数码管是单片机系统中经常用到的显示器件, 从内部结构上可以分为共阴极和共阳极数码管。对不同的数码管,电路的接法也不一样。图1A为数码管的结构图。以共阳极数码管为例, 要想点亮某段, 只需要在相应的段上给低电平即可。图1B为共阳极数码管段码分布, 以及一个显示的实例。

 

 

图1 数码管段码分布及显示示例

按照工作方式, 数码管驱动可以分为和动态扫描。所谓静态显示, 就是每一个数码管的段码都要独占具有锁存功能的输出口, CPU把要显示的字码送到输出口上,就可以使数码管显示对应的字符, 直到下一次送出另外一个字码之前, 显示的内容一直不会消失;动态扫描是把所有显示器的8个段码中的A-dp的各个相同段连接在一起, 接到一个公共的输出口上,而数码管的位端分别接在另外的输出口上,通过这两个输出口的两组信号相互作用来产生显示效果。即让各位数码管按照一定顺序轮流显示, 只要扫描频率足够高, 由于人眼的“ 视觉暂留”现象,就能连续稳定的显示。静态显示法的优点是显示稳定、亮度大, 节约CPU时间, 但占有I/O口线较多, 硬件成本高。动态扫描其特点在于能显著降低显示部分成本,大大减少显示接口的连线结构。举例, 静态驱动4位数码管, 需要4×8=32个I/O口, 而动态的驱动位数码管只需要4+8=12个I/O口。

电路图详解

单片机的I/O资源是有限的, 因此如何节省I/O口线而又不影响系统的功能是单片机工程师面临的实际问题。图2采用是串行转并行芯片74HC595和三线一八线译码器实现8位数码管的驱动, 好处是可以节省更多的I/O口线作其他用途。正常驱动8个数码管需要8+8=16根口线, 采用595+138的方式只需要3+3=6根。

 

 

图2 数码管显示电路连接图

为了更好地理解电路, 这里简单介绍一下74HC595和74LS138两个芯片的作用。74HC595是一款串行移位输入、8位并行输出的芯片, 内带数据移位寄存器和三态输出锁存器;SER为串行数据输入;SRCLK为移位时钟输入;RCLK为锁存控制输入;QA-QH为数据输出, QH’为向下一片(位)的串行数据输出。74LS138是一个3线一8线的译码器, 低电平有效输出, 因此每个时刻输出端口只有一个是低电平, 其余都是高电平输出, 因此可以驱动共阴极数码管。如果驱动共阳极的数码管还需要做一个非门的转换。最后, 为了增加单片机I/O的输出能力, 在74HC595与数码管之间串接了一个74HC245并行驱动芯片。

从电路图中可以看到, 每个芯片的电源和地附近都接了一个104电容, 这个高频滤波电容, 可以减小电源对IC的影响。注意高频电容的布线, 连线应靠近电源端并尽量粗短, 否则, 等于增大了电容的等效串联电阻, 会影响滤波效果。其实, 不加这个电容也可以, 但万一因为干扰出了问题, 就会很难查找根源, 实际调试电路板的时候就会发现电容的作用非常大的, 而这些恰恰是初学者容易忽略的地方。

关健程序分析

动态扫描需要注意的一个问题, 由于所有数码管的段码接到一个公用的I/O上, 在每个瞬间, 各个位数码管上的段码都是一样的, 要想在不同的位显示不同的信息, 必须用扫描显示的方式, 在一段时间内, 只点亮一个数码管, 其余的都处于关闭状态;下一个时间段内点亮下一个数码管, 其余的都处于关闭状态。如此循环, 造成一个视觉暂留的效果, 当闪烁的频率大于50Hz的时候, 人眼就分辨不出来了, 即各个位上显示的信息就“ 区分”开了。扫描频率过高, 每个位显示的时间太短, 数码管的亮度不够;扫描频率过低, 会有明显的闪烁感。这个时间需要根据不同的硬件电路, 做不同的调整, 而且跟数码管的个数有关, 一般的经验值延时10ms左右。

 

 

图3 数码管流程图

总结

动态扫描过程中, LED显示的亮度同驱动电流、点亮时间和关断时间有关, 调整驱动电流大小和扫描频率, 可以控制LED显示的亮度, 同时稳定显示。这需要在实际的调试过程中不断的尝试, 找到一个最佳临界点!对于尺寸比较大的数码管, 可以在74HC245与数码管之间再串接一个ULN2003(7段)或者ULN2803(8段)达林顿管增加驱动能力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭