当前位置:首页 > 电源 > 功率器件
[导读]对大部分负载管理电路来说,MOSFET正在迅速取代继电器成为首选的开关技术,电力电子系统的维护成本也随之降低。本文讲述了输出电流的控制和感测基础,并分析了一种智能负载管理产品。

对大部分负载管理电路来说,MOSFET正在迅速取代继电器成为首选的开关技术,电力电子系统的维护成本也随之降低。本文讲述了输出电流的控制和感测基础,并分析了一种智能负载管理产品。

随着微处理器对电力电子控制能力的增强,管理负载电流益发行之有效,而不再是不堪的恶梦。在本文中,我们从基本的输出电流控制和感测开始,然后介绍一种智能负载管理产品。

输出电流控制技术随半导体开关的进步而发展。对大多数负载管理电路来说,MOSFET晶体管正在迅速取代继电器成为所选择的开关技术。有两种方法可将MOSFET晶体管插入到电路中:

1 作为高侧P沟道开关

2 作为低侧N沟道开关

对两种MOSFET晶体管类型做一个快速回顾,我们可以记起来,P沟道MOSFET是通过将栅极电压拉到比源极电压更低来进行栅控的;而N沟道MOSFET的栅极是由比源极更高的电压来导通的。另外,其电流方向是相反的。这两个因素决定了与馈入负载的电压和电流相关的开关方向。

图1:N沟道和P沟道MOSFET。

图2显示了P沟道MOSFET作为负载开关时的优势:P沟道控制电流流入地面,而N沟道控制电流流出地面(通常称为“返回”)。

图2:P沟道器件作为负载开关时具有优势。

在这两种情况下,栅极电压都必须超过器件的阈值电压,才能将器件作为欧姆区(ohmic region)中的开关完全开启。请注意,这里的讨论集中在增强型P沟道和N沟道MOSFET。不同类型的JFET具有不同的栅控要求。

图3:本文着眼于增强型MOSFET。

从器件操作回到负载管理电路,图4所示是将高压侧p-FET用作开关元件,它还用了一个安森美的N沟道efuse产品。

图4:高压侧p-FET作为开关元件。

图5所示是低侧(返回侧)n-FET作为开关元件,使用了安森美的N沟道efuse产品。虽然N沟道MOSFET比P沟道MOSFET约小三分之一,因此成本也更低,但由于P沟道MOSFET能保持合适的接地参考(参考图5中N沟道n-FET开关位置,对地参考“隔断”),所以使用P沟道MOSFET进行负载管理更好。

图5:低侧(返回侧)n-FET作为开关元件。

efuse是一个重要的进步,因为它允许在极性反接、输出短路或过电流情况下开启电路。以类似的方式,也可以监测和控制流过开关的电流。事实上,如果栅控不正确,会发生开关振荡。

尽管半导体不会像继电器那样表现出开关反弹,但仍有可能出现不需要的振铃。

本文将着眼于高侧电流感测。高侧电流感测可以通过模拟电路进行控制,同时高侧电流的数字控制也在向更高水平推进。这些开关内置了智能功能,包括可以反馈给微处理器的可编程电流水平和数字化电流水平读数。这些信息被存储在专门处理事件定时采样的微处理器中,从而创建记录水平历史。然后使用软件确定负载电流随时间的变化。该信息与编程的阈值进行比较,并能提醒用户发生的变化。

在继电器负载的情况下,利用这些信息可以对即将发生的组件故障发出告警。这种智能负载管理产品可以作为一个单独实体运行,也可与智能电源一起使用。与智能电源一起使用时,可以采用RS-485通信进行可编程负载监控和实时更新。

负载管理能力的增强正在改变电力行业。数字控制能力变得更精确、更可调,系统性能和可靠性也得到提高,因而能够预测故障。这样的话,便不必再仅仅为了更换一条熔断的保险就下派技术人员到现场,从而降低了维护成本。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭