当前位置:首页 > 电源 > 功率器件
[导读]0 引 言 RF MEMS开关在隔离度、插入损耗、功耗以及线性度等方面,具有比FET或pin二极管传统微波固态开关无法比拟的优势,从而获得了广泛的关注,并显示出在微波应用领域

0 引 言

RF MEMS开关在隔离度、插入损耗、功耗以及线性度等方面,具有比FET或pin二极管传统微波固态开关无法比拟的优势,从而获得了广泛的关注,并显示出在微波应用领域的巨大潜力。自1979年K.E.Petersen第一次报道RF MEMS开关的应用以来,业界已研制出很多不同结构的RF MEMS开关。无论是在隔离度还是在插入损耗上,RFMEMS电容式并联开关在Ka到W波段都表现出了良好的性能。但是,RF MEMS电容式开关在低频段的较低隔离度限制了其在X波段的应用。为克服以上不足,J.B.Muldavin等人提出了在开关梁与地平面之间加入高阻抗传输线,通过该传输线引入的串联电感使LC谐振频率达到X波段范围,并获得了在X波段隔离度优于-20 dB的性能。J.Y.Park等人设计的RF MEMS电容式并联开关使用介电常数为30~120的SrTiO3作为介质层,通过增加开关闭态的电容值使开关在10GHz处的隔离度优于-30 dB。M.Tang等人把CPW下电极放置在由KOH刻蚀、深度为1.6μm的衬底盆状槽中,获得了10~13 GHz频率下,单个开关隔离度为-16.5~-28 dB,两个开关级联的隔离度为-25~-35 dB。

本文提出了一种通过CPW传输线与共面波导地平面间的衬底刻槽,提高隔离度并应用于X波段的RF MEMS电容式并联开关。该设计在不改变开关结构和电路结构的基础上提高了开关的隔离性能,为基于CPW结构的RF MEMS高性能电路设计提供了一种参考。

1 开关的设计

1.1 开关设计与微波特性分析

本文设计的电容式并联开关结构如图1所示。电路采用共面波导(CPW)结构,开关末端的两个锚区分别固定于CPW两个地平面上,开关梁采用平板梁结构,位于CPW传输线上方2 μm处。开关梁与地平面之间加入短截高阻线可增加开关的串联电感,从而降低谐振频率,实现X波段频率范围内更高的隔离度。

本文在CPW传输线与地平面间引入了两条深度为20μm的衬底刻槽。由CPW传输线理论,当图1(b)所示的CPW电路结构中传输线宽度W增加时,传输线与地平面间距G减小,CPW的分布电容CCPW增大,有


CPW的有效介电常数εeff、相速vph和特征阻抗Z0分别表示为

综合以上分析,CPW特征阻抗随传输线宽度的增加而减小。通过文献[7]、[8]对衬底刻槽的分析,在保持电路几何参数不改变的情况下,CPW特征阻抗随刻槽深度的增加而增加。因此,可以在不改变传输线特征阻抗的情况下,通过选择合适的刻槽深度来增加CPW传输线的宽度,从而可以有效减小因传输线导体损耗引起的信号衰减。
另外,CPW传输线宽度的增加同时也增大了RF MEMS开关处于下拉状态时与传输线上面介质层的接触面积,从而增大了开关在关态时对射频信号的短路电容,有利于提高隔离度。

如图2(a)所示,当开关处于开态时,梁与传输线之间的开态电容较小,对射频信号形成开路。如图2(b)所示,当开关处于关态时,传输线上接触部分厚度为150 nm的Si3N4介质层隔离直流电压,并且可以产生较大的闭态电容,对射频信号形成短路。

图3为开关的等效电路模型,其中Z0为CPW传输线输入输出特征阻抗;C为开关梁与传输线间的电容,它随开关的工作状态而改变;LS与RS分别为开关梁的等效电感和电阻;L1为开关梁与地平面间的短截高阻线引入的串联电感。开关的谐振频率f0由式(5)给出,其中L为总的串联电感。本文中经过优化设计的短截高阻线尺寸为150μm×60 μm,开关在闭态时获得了13.5 GHz的谐振频率。

图4(a)为本文设计的π型调谐开关电路,衬底刻槽位于传输线与地平面之间,图中l和z分别为高阻传输线的长度和宽度。图4(b)为其等效电路模型。π型匹配电路可以在得到宽带匹配的同时,还能在适当的开态电容下获得很高的隔离度。高阻传输线位于两并联开关之间可实现阻抗匹配。π型调谐电路开态下的隔离度可以近似表示为:

式中,Cd为闭态电容,βl和Zh分别为高阻传输线电长度和阻抗。

1.2开关机械性能分析

当在开关梁与传输线中心导体之间施加直流偏置电压时,梁上的静电力使其离开初始平衡位置向下运动。当直流偏置电压达到阈值电压时,开关下降到上下电极初始间距的2/3处进入不稳定状态,并使开关迅速被吸引致闭合,即"pull-in"现象。其中,阈值电压

式中:k为梁的等效弹性系数;ε0为空气的介电常数;W为CPW中心传输线的宽度;ω为开关梁中心极板的宽度;g0为梁与下电极的间距。等效弹性系数k可以表达为
式中:E为梁材料的杨氏模量;t为弹性梁的厚度;Lm为梁的长度;σ为梁的残余应力;v为梁材料的泊松比。

为减小梁的弹性系数从而使执行电压降低,本文采用了图5所示的两个弯曲的弹簧梁结构。其中,一个弯曲的弹簧梁的等效弹性系数可以表达为

2 结果与讨论

本文使用有限元软件IntelliSuite对开关模型进行机械特性分析。CPW和开关梁材料均为Au;Si衬底上热氧化生长形成厚度为400 nm的SiO2用作电气隔离层;牺牲层采用PSG(磷硅玻璃),通过湿法刻蚀释放该牺牲层;衬底刻槽使用KOH溶液湿法刻蚀得到。表1给出了仿真过程中开关的材料特性与结构参数。

图6是开关梁位移随上极板与下极板间电势差的变化曲线。从图6(a)可以看出,平板梁开关结构的执行电压为26 V。由图6(b)可知弹簧梁开关结构的执行电压降低到14 V。

本文使用HFSS软件对开关的微波传输性能进行分析。图7是平板梁开关结构S参数随频率的变化曲线,可以获得衬底刻槽结构的RF MEMS电容式并联开关在闭态时,5~30 GHz下S11小于-0.25 dB,隔离度在谐振频率13.5 GHz处为-54.6 dB,,相比于虚线所示的传统结构开关-47.2dB的隔离度,本文设计的衬底刻槽使开关的隔离度性能在谐振频率处提高7 dB。

图8为弹簧梁开关结构的S参数仿真结果,可以看出由弹簧梁结构引入的串联电感使谐振频率降低至11 GHz,在谐振点处的隔离度为-42.8 dB。从图中可以看出,是否具有衬底刻槽结构对弹簧梁开关的S参数曲线影响不大,仅在20 GHz以后的频段获得了轻微的隔离性能改善。衬底刻槽对弹簧梁结构RF MEMS开关的隔离度性能改善不大的原因,可能是弹簧梁结构引入了较大的串联电感和串联电阻,增加了传输损耗。

图9为π型调谐开关电路的S参数随频率的变化曲线。如图所示,采用弹簧梁开关结构的电路在谐振频率11.5 GHz处获得了-81.6dB的隔离度。相对于弹簧梁结构,采用平板梁开关结构的π型调谐电路在谐振频率14 GHz处的隔离度为-72 dB,并且在较宽的带宽范围内具有更高的隔离性能。

3 结 论

本文设计并分析了一种通过衬底刻槽提高RFMEMS电容式并联开关隔离度的新型结构。使用有限元软件IntelliSuite和HFSS分析了该结构的机械特性和微波性能,平板梁开关结构的执行电压约为26 V,开关关态时在13.5 GHz谐振频率处的隔离度为-54.6 dB,相比没有衬底刻槽的并联开关隔离度提高了7 dB。采用弹簧梁结构的开关的执行电压下降为14 V,隔离度在11 GHz处为-42.8 GHz。为获得更高的隔离性能,本文分析了π型调谐开关电路,采用平板梁和弹簧梁开关结构的电路分别在14 GHz和11.5 GHz处获得了-72 dB和-81.6 dB的隔离度。所设计的开关通过添加衬底刻蚀工艺程序,增大了RF MEMS开关电路的隔离度,有利于提高单片射频微波电路的集成度和隔离度性能。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭