当前位置:首页 > 电源 > 功率器件
[导读] 本文提出了一种输入级由最小电流选择技术来稳定跨导、输出级采用浮动电流源控制的前馈AB类CMOS运算放大器。1 输入级的设计1.1 轨对轨运放输入级电路分析通常运放输入级采用

本文提出了一种输入级由最小电流选择技术来稳定跨导、输出级采用浮动电流源控制的前馈AB类CMOS运算放大器。

1 输入级的设计

1.1 轨对轨运放输入级电路分析

通常运放输入级采用差分输入模式。在CMOS工艺中,差分放大器可通过PMOS或NMOS差分对来实现。但是,通常的差分对不能够满足轨对轨共模输入的要求,因此,实际中常采用的方法是使用NMOS和PMOS互补差分对。简单的轨对轨输入级结构如图1所示。


电路工作范围可分为3个区域:

(1)当VCM接近VSS时,NMOS差分对截止,PMOS差分对处于工作状态,gm=gmP;

(2)当VCM接近VDD时,PMOS差分对截止,NMOS差分对处于工作状态,gm=gmN;

(3)当VCM处于中间值时,两差分对均同时工作,gm=gmP+gmN。

但此结构存在一个重要问题,即在整个共模输入范围内,输入电路的总跨导不恒定,变化达到2倍,如图2所示。跨导的变化会引起信号的失真并给环路的增益以及运放的频率补偿带来很大的影响。因此要求输入级的跨导在整个共模输入范围内保持恒定。


目前跨导恒定的方法有4种:

(1)利用3倍电流镜偏置回路保持尾电流平方根之和恒定来获取恒定的跨导;这种方法缺点是过分依赖于理想的平方律模型,在MOS管工作在强反型层和弱反型层时不能通用。

(2)利用齐纳二极管使得P、N差分输入对的栅源电压之和为常数;这种技术的缺陷是二极管连接的MOS性能是其两端电压的函数,因此gm共模输入范围内仍然有一些变化。

(3)使用电平移位使PMOS跨导曲线左移或NMOS跨导曲线右移;这种方法最大的缺陷是需要调整,因为其性能随工艺、温度变化、最佳的直流电平的改变而改变。

(4)最大/最小电流选择法在电路工作时只选择其中一对电流较大的差分对作为输出。虽电路的设计比较复杂,但它的输出电流连续,不依赖于平方律模型,跨导稳定性好,MOS管可工作于所有区域。本文就是采用最小电流选择的方法设计了运放的输入级。

1.2 最小电流选择轨对轨输入级

图3为用最小电流选择技术实现的输入级示意图,若I1=I2=I3=I4=Itail=I,那么选择(

中最小的一组电流也就是选择(IN1,IP2)(IN2,IP1)中较大的两路电流值。


具体的最小电流选择电路如图4所示。M1,M2,M3构成2个比例为1:1的电流镜,同样M4,M5和M6,M7分别为比例为1:1的电流镜。

当Iin1


若输入级差分对管选取合适的尺寸,使其在饱和状态时有:gmN=gmP=gmT。假设VIN+>VIN-,结合图5输出级的共源共栅电路,可得:


由公式(3)可以看出最小电流选择技术稳定了运放输入级的跨导。

2 浮动电流源控制的前馈AB类输出级

运放输出级的作用是在可接受的信号失真限度内将输入级的信号有效地传递给负载,同时为保证运放有较好的频率特性,进行必要的频率补偿。最小电流选择电路通常与折叠式共源共栅放大器结合使用,在获得较大增益的同时也可满足低电压的要求。依据上述要求,将折叠共源共栅作为有源负载与AB类前馈式输出级相结合,组成浮动电流源控制的无截止前馈AB类输出。在保证较小动态失真的前提下实现信号的满幅输出。


输出级的电路原理图如图5所示。M43,M44为2个共源级放大输出管,M33,M43,M39,M40和M41,M42,M34,M44形成2个跨导线性回路,Ibias1=Ibias2=Io。依据基尔霍夫电压定律有:


设置(W/L)43/(W/L)39=(W/L)44/(W/L)42,这样输出级静态电流保持不变,静态工作点不受输入共模电压变化的影响。此外M33、M34还保证了M43、M44的栅极之间有一个稳定的电压,使它们均偏置在饱和区,当输入电流流入AB类输出级时,M33电流增加量等于M34的电流减小量,输出管M43、M44的栅级电压升高,输出级电路从电路输出点抽取电流,直到流过M33的电流为IM30。浮动电流源和AB类控制浮动电流源电路具有相同的结构和尺寸,浮动电流源补偿了AB类控制电路对电源电压的依赖性,减小了电源电压变化对输出级静态电流的影响。C1、C2为密勒补偿电容,对电路进行频率补偿,实现系统的稳定。

3 整体电路与仿真结果分析

运算放大器的整体电路如图6所示。在0.6μmBiC-MOS工艺下,用HSpice软件对该运算放大器进行了仿真验证,仿真时在3 V单电源供电的全典型状态下进行。


图7为输入级跨导的仿真结果,由图可见,在0~3 V的共模输入电压变化范围内,整个输入级跨导最大变化为3.3%,小于文献中的7%和6%。


图8为运放的幅频和相频特性曲线,负载电阻为10 kΩ、电容为10 pF。直流开环增益为93 dB,相位裕量为66°。

图9、图10分别为共模输入范围曲线和输出电压摆幅曲线,从图中可以看出运放的输入输出均达到轨对轨的要求。运放的其他仿真参数如表1所示。


4 结语

本文没计了一种轨对轨运算放大器。针对轨对轨输入级中跨导不恒定和简单的AB类输出性能较差这两个问题,选择采用最小电流选择电路来稳定输入级的跨导,使用浮动电流源控制的无截止前馈AB类输出级减小输出端的动态失真和对电源电压的依赖性,实现运放的满幅输出,仿真结果表明,该运放输入级的跨导在整个共模输入范围内仅变化了3.3%,运放各个指标性能良好,适合于低压低功耗的系统。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭