当前位置:首页 > 电源 > 功率器件
[导读] 通用二阶滤波器有两种形式,一种是TT(Tow-Thomas)滤波器,另一种是KHN(Kerwin-Huelsman-Newcomb)滤波器。与TT滤波器相比,KHN滤波器不仅能直接实现低通和带通滤波,还能实

通用二阶滤波器有两种形式,一种是TT(Tow-Thomas)滤波器,另一种是KHN(Kerwin-Huelsman-Newcomb)滤波器。与TT滤波器相比,KHN滤波器不仅能直接实现低通和带通滤波,还能实现高通滤波,应用广泛,是现代电流模式滤波器设计的基础。然而KHN滤波器属于单输入、三输出的通用滤波器,不能实现三输入、单输出通用滤波。由于电阻比有限,因此其Q值不能太高。三个集成运放中,有一个运放的反相端不满足虚地,则对运放提出较高要求。

鉴于KHN滤波器在现代电流模式电路中的地位,提出了另一种形式的KHN滤波器,它不仅能实现单输入、三输出的通用滤波,也能实现三输入、单输出通用滤波,电路的极点频率和品质因数能够被独立、精确的调节,电路也能被修饰成一个正交振荡器。电路包含4个通用集成运放、2个电容和11个电阻,且所有运放的反相输入端均虚地。

1 电路原理

图1给出了由四运放构成的多功能电压模式二阶电路,其中有1个大反馈环和2个小反馈环。

设R1=R2=R,C1=C2=C,R5=R6,使用MASON公式,可得到三环路的增益和为

式(3)表明,通过同步调整R1、R2,可实现极点频率的独立调节,而不影响品质因数。式(4)表明,通过调整R4、R3的电阻比,可实现品质因数的独立调节,而不影响极点频率,从而实现二者的正交调节。值得注意的是,通过调整R4/R3,很容易实现高Q电路,特别是当R4=R 3,Q=∝,这意味着电路变成了一个正弦振荡器,其频率可由R、C调节。

若Vo3=Vo,则从电压源Vi1、Vi2、Vi3到输出端Vo的前向通道增益分别为,由MASON公式知,相应的传输函数为

由式(5)、式(6)、式(7)可知,若Vo3是输出,则Vi1是低通输入,Vi2是带通输入,Vi3是高通输入。图1所示电路是从一个端口输出信号,从3个端口输入信号的双二次节,分别实现了低通、带通和高通二阶滤波。相应的增益常数分别为GL=-1,GB=Q,GH=-1。

如果Vi3=Vi,则从Vi到输出端Vo3、Vo1的前向通道增益分别为-1和1/sRC,从Vi到输出端Vo2的前向通道增益和为,相应的传输函数为

由式(8)、式(9)可知,若Vi3是输入,则Vo3是高通输出,Vo1是带通输出。式(10)、式(11)说明,Vo2并不是低通输出,当满足条件R4/R3-1=1时,Vo1+Vo2才是低通输出,这是一个值得注意的问题。所以图1电路也能从一个端口输入信号,从多个端口输出信号的双二次节,同时实现了高通、带通和低通二阶滤波。相应的增益常数分别为GB=-1,GB=Q,GL=-1。

2 计算机仿真

为了验证电路的正确性,在EWB5.O平台上创建图1电路,其中集成运放选用通用运放μA741,这里仅仿真单输入、三输出滤波器。取R1= R2=R=10 kΩ,C1=C2=C=10 nF,R5=R6=1O kΩ,R4=20 kΩ,R3=10 kΩ,则理论给出fo=1.591 5 kHz,Q=1,GB=-1,GB=1,GL=-1。仿真结果如图2所示。用EWB5.0提供的指针可测得:fo=1.584 9 kHz,Q=1.O11 3,GH=-1,GB=1.011 3,GL=-1。

为了说明电路的品质因数受电阻比R4/R3,控制,仍取R1=R2=R3=R5=R6=10 kΩ,C1=C2=10 nF,使R4分别为12.5、15、17.5、20 kΩ时,理论给出fo=1.591 5 kHz,Q分别为4、2、1.33、1。用EWB5.0可测得fo=1.629 8 kHz,Q分别为4.069 O、2.031 3、1.350 3、1.010 8,仿真结果如图3所示。

为了说明电路的极点频率受R1、R2控制,且与R4、R3无关,取R3=R5=R6=1O kΩ,R4=20 kΩ,C1=C2=1OnF,使R1=R2=R,分别为1、10、100kΩ时,理论给出Q=1,fo为15.915、1.591 5、O.15915kHz,带通滤波器的频率特性如图4所示。用EWB5.0可测得fo分别为16.3789、1.637 9、0.163 789 4 kHz时,相应的Q分别为1.142 7、1.010 3、0.999 5。显然频率较高时,出现了Q增强现象,这是由于运算放大器的有限增益带宽积造成的。

理论上,当R4=R3,电路变成了振荡器,仿真结果表明R4要稍小于R3,才能维持振荡。取R1=R2=R3=R5=R6=10 kΩ,C1=C2=10 nF,当R4= 9.9 kΩ<R3=10 kΩ,电路振荡,由于Vo2比Vo1超前90°,所以Vo2和Vo1是两相正交正弦波。理论给出fo=1.5924kHz。仿真结果如图5所示。实测fo=1.558 8 kHz。造成频率下移的原因是运算放大器的有限增益带宽积。造成波形失真的原因是无限幅电路,只要给积分器增加二极管限幅电路,即可改善波形。可见计算机仿真结果与理论设计基本一致,说明所设计电路正确有效。


3 结论

使用4个通用集成运放、2个电容和11个电阻,设计二阶通用滤波器,其参数设置如下:fo=1.591 5 kHz,Q=1,GB=-1,GB=1;GL=-1。该电路既可单输入、多输出同时实现低通、带通和高通滤波,也可以多输入、单输出分别实现低通、带通和高通滤波。电路除具有低的灵敏度外,还具有以下特点:1)电路的极点频率和品质因数能独立调节,容易获得高Q滤波;2)所有集成运放的反相输入端虚地。因而承受的共模电压为O,对运放的要求不高;3)电路还可被调节成一个频率可调的正交正弦振荡器。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭