当前位置:首页 > 电源 > 功率器件
[导读] 0 引言表面等离子激元(简称SPPs)早在1950年的Ritchie工作之后就被人们所认识。它们本质上是光子和导体中的自由电子相互作用而被表面俘获的广波,或者说是自由电子和光波电

0 引言

表面等离子激元(简称SPPs)早在1950年的Ritchie工作之后就被人们所认识。它们本质上是光子和导体中的自由电子相互作用而被表面俘获的广波,或者说是自由电子和光波电磁场由于共振频率相同而形成的一种集体振荡态。

SPPs沿着导体一电解质分界面处传播,传播距离大约是几百纳米到几微米,并在垂直表面的两个方向上,均以指数式衰减。传统光学由于衍射极限的限制,只能把光子器件做到波长(λ/n)量级,而无法满足集成光学的需求,而基于表面等离子激元的光子器件则打破了衍射极限的限制,可以将光束缚在亚波长结构中传播,故有利于光器件的集成化发展。

基于表面等离子激元的光波导由于可以将光场限制的很小,因而可以实现非常急剧的弯曲,进而可以做成非常小的环状波导。本文研究的基于表面等离子激元的共振环滤波器就是一种十分重要,也是十分基础的光学器件,在光通信中有着很广泛的应用(如光开关,波分复用等)。

1 表面等离子激元的特性

在合适的边界条件下解Maxwell方程,可以得到SPPs的色散关系:

其中,ε是金属的介电常数,εd是电介质的介电常数,kspp是SPPs的波矢,k0=ω/C是自由空间的波矢。色散关系公式(1)中,金属的介电常数ε采用Drude模型:,其中ε∞是带间跃迁对的介电常数,ω是等离子共振频率,γ是电子碰撞频率。由式(1)可以看出,由于kspp>k0,SPPs的动量与入射光子的动量不匹配,所以,在通常情况下,SPPs不能被激发,它可以通过在金属表面引入亚波长缺陷等方法来激发。

2 可调谐谐振环滤波器结构分析

图1所示是基于表面等离子激元的结构模型,它由一根长直波导和一个环形波导构成,其波导材料均为sio2,周围覆盖的金属金、银、铝等都是常用的金属,对于在光频段来说,银(Ag)的损耗要小。该滤波器的具体数值:长直波导的宽度和环状波导宽度w均为200 nm。环的半径R是1μm,环与长直波导相距30 nm(直波导的下层到环形波导外层的距离)。光由入射端(端口1)进入长直波导,通过共振器(环形波导)在出射端(端口2)射出,出射强度由直波导中的导模和环状波导中的导模相互干射决定。由于环形波导中的导模位相是周期性变化的,因此估计出射端的光场强度也将随一定的周期变化。假设光在波导内的传播以及光的耦合没有损耗,而且在波导内只有单一模式传播,那么,理论上的透射率为:

式中,θ是导模在环中每圈的相位增加,α代表导模在环中的损耗,包括传播损耗和环的弯曲损耗,t=∣t∣exp(j?)是复系数,表征的是没有被耦合进环形波导内的长直中的那部分导模。

3模拟仿真分析

仿真分析时,光源可采用平面波TM模,边界条件选取APML。图2所示是对该模型进行的仿真图。由图2可见,光在通过长直波导时,一部分光耦合进了环状波导。

图3所示是R=1μm时,端口2(蓝色)和端口1(红色)出射归一化强度曲线,从图3可以看出,透射强确实随波长有周期性变化,在所示波长范围内出现了两个吸收峰(absorption peak),从透射公式(2)中可以得出,环的半径是影响透射结果的重要因素,为利于对比,接下来将半径改为1.1μm,并进行仿真,从而得到了图4所示的出射归一化强度曲线。

对比图3和图4可以看出,当R从1 μm变化到1.1 μm,吸收峰的位置整体向右偏移了,并且出现了3个吸收峰,R=1.1μm消光比(extinction ratio)要比R=1 μm时更大,吸收峰同样尖锐。图3中较好的1.8μm到1.9μm处的两个吸收峰的消光比大约是8db,-3db带宽大约是8nm,好于现有水准。另一个重要的衡量滤波器的系数是FSR(passband bandwidth and extinction ratio),在本文中,可以简单地理解为相邻吸收峰的距离,R=1μm时是90 nm,同样波长范围内,R=1.1时则出现了3个吸收峰,说明当R变大时,FSR反而变小,经测量大约是86 nm。可以推断,当环继续增大,吸收峰间距也许能满足DWDM的需要,从而为DWDM大型集成化提供可能。

4 结束语

本文分析了基于表面等离子激元的可调谐共振环滤波器结构原理,并分别对环半径R为1.0μm和1.1 μm时进行了仿真。结果发现,波导环半径的变化会周期性地在特定波长上产生强烈的吸收效果,其中-3 db带宽只有8 nm,好于现有水准,且随着环半径R的增大,吸收峰会向右移动,而且可以通过改变金属温度的方法对滤波器进行调谐。通过计算在所示波长范围内,所有峰的数量可知,随着环状波导半径R的增大,吸收峰会更密集(FSR减小),而当环的半径继续增大,吸收峰间距越来越小,但峰依然尖锐,可以符合密集波分复用(DWDM)的需求,应用前景光明。另外,本研究模型结构简单,整个模型大小不超过10μm2,而且比现有的光子晶体器件小,很易于集成。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭