当前位置:首页 > 电源 > 功率器件
[导读]DC-DC 转换部份在电子产品中可谓无处不在。全球所有电子系统都由直流供电,其中大部份都用 DC-DC 转换器来把电压转换成系统各个部份所需要的电压。目前,这种功率转换功能大

DC-DC 转换部份在电子产品中可谓无处不在。全球所有电子系统都由直流供电,其中大部份都用 DC-DC 转换器来把电压转换成系统各个部份所需要的电压。目前,这种功率转换功能大都由高功率密度的 DC-DC 转换器来完成。这些转换器以高频率的开关技术为基础。而在开关转换器中,有效的开关频率一直被视为模块功率密度大小,性能表现优劣的关键。开关频率高,所用的磁性元件和电容愈小,反应时间更快,噪声更低,滤波要求较小。

虽然市面上有上百种的 DC-DC 转换器,各有不同的设计和拓朴结构,大体可以归为两大类:脉宽调制式 (PWM) 和准谐振零电流开关 (ZCS) 两种。目前,市面上有一种 DC-DC 转换器,它的功率密度高,成本低及体积细小,而且有多种输入、输出电压选择。问题是:功率转换架构是关键因素吗?

对,功率转换拓朴架构的确十分重要。

在脉宽调制式架构,输入电压开关频率是固定的(一般是数百 kHz),做成一连串的脉冲,利用调节脉冲的宽度来为负载提供正确的输出电压及足够的电流。满载时,电流的波形是一个方波 (图1)。

脉宽调制式转换器的功率密度是有局限的,因为它需要在工作效率和开关效率间作取舍。问题的核心在于 “开关损耗” 。开关元件在瞬时导通和关断 (T3是固定的)时,使电感电流产生不连续性的状态,因而产生热量。由于功耗来自开关损耗,它会随着脉宽调制式转换器的开关频率增高而增大,直至它变为一个显著的耗损成因 (T1 是可变的),达到了那一点,效率会迅速减低,开关元件所承受的热及机械应力变得无法处理。这种非零电流开关转换器具有开关损耗的属性,变为 “开关频率障碍”,限制了它提升功率密度的能力。

图1 - 零电流开关和脉宽调制式架构的电流波形


准谐振的零电流开关转换器在零电流的瞬间采用正向开关,克服了开关频率障碍。每个开关周期传送等量的“能量包”到转换器的输出端。每个 “开” 与“关” 都在零电流的瞬间进行,形成一种近于没有功耗的开关。零电流开关转换器的工作频率可超出 1 MHz。它避免了传统拓朴结构那不连续性电流的特性;实现 “无功耗” 的把能量由输入传输至输出,大大减低传导和辐射噪声。

准谐振转换器的波形是一半弦波 (图1),产生的谐波很小。此外,由于电流的波形没有尖峰,减少电抗元件的应力,减低寄生噪声。相反,PWM 的冲波形带尖峰,不单产生开关频率的谐波,而且加大电抗元件的应力,在更高的频率 (10 – 30 MHz) 上产生寄生噪声。这些都是噪声,传入输入线(传导),及在空气中传播(辐射)。采用这类转换器,滤波和屏蔽可能是一个棘手的问题。这要取决于最终系统的噪声要求。

再者,由于零电流开关的转换器的开关频率很高 (因为电抗元件如电容和磁性元件的体积很小),它的功率密度比 PWM 转换器高出1倍。而且,它的效率曲面亦较平坦,从 20% 负载到满载的分别不大,而 PWM 转换器的效率在满载时最高,然后下降。如果应用需要动态负载,或并不是在满载工作,这点便要十分注意。

零电流开关架构的其它特性还包括:宽阔的可调输出电压和均流能力。良好的均流可令并联操作和冗余应用更容易。

宽阔的可调输出电压为电源工程师提供更多选择。市面上的 DC-DC 转换器,常见的调节范围是+/-10%,有些转换器的可调范围由+20% 至 -50%。Vicor 的 Maxi,Mini 或 Micro 转换器的调节范围是额定电压的 10% 到 110%。可用固定电阻值、电位器或 DAC 来调节转换器的输出电压。以一个 24V 输出的转换器为例,它的输出电压可调节至 12V 或 15V。一个 400W,5V 输出的转换器可以调节为 3.3V、2V 或 1.2V 于 80A 输出。

Vicor 模块的 N+M 均流架构会自动选出一个模块作为主导。其它模块会变为辅从,与它同步工作。阵列内的模块在输入那边的母线以高速脉冲来通信。可以监测脉冲变化来判断系统的工作情况。如果主导模块失效,另一个模块会自动被选为主导,系统仍然继续工作,不受影响。由于每个同步脉冲的时距是纳秒,模块可用一个小电容作交流耦合,这个电容可以复制母线和提供隔离,保证个别干扰或模块短路不会影响整个系统。

如果上述各项特性,如噪声、功率密度、平稳的效率、输出电压调节范围或容错冗余等都是重要考虑因素,那么,转换器的拓朴架构便十分重要。

编辑:博子

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭