当前位置:首页 > 电源 > 功率器件
[导读]利用可寻址远程传感器数据通路(HART)协议,过程测量与控制器件可通过传统4-20mA电流环路实现通信。这种协议使用1200 Hz和2200 Hz频率的移频键控(FSK)。此处,一个 1200

利用可寻址远程传感器数据通路(HART)协议,过程测量与控制器件可通过传统4-20mA电流环路实现通信。这种协议使用1200 Hz和2200 Hz频率的移频键控(FSK)。此处,一个 1200Hz周期代表一个逻辑1,而两个2200Hz周期代表逻辑0.由于FSK波形的平均值始终为0,因此模拟4-20mA信号不受影响。

理想情况下,FSK信号由叠加在DC测量信号上的两个频率正弦波组成。但是,相连续FSK正弦波的生成是一种十分复杂的过程。因此,为了简化HART信号波形的生成过程,HART规范的物理层对参数极限值进行了定义,标准化波形的振幅、形态和转换速率均不得超出这些参数极限值。在这种情况下,一种梯形波形非常适合于这种应用,图1显示了其各个极限值。

梯形HART电流波形的最小与最大值

图1:梯形HART电流波形的最小与最大值

图2所示HART发送器提供了一种简单且低成本的解决方案,其产生一个梯形HART波形,并将它叠加在一个可变DC电平上,最终把产生的输出电压转换为电流环路。

低成本HART发送器

图2:低成本HART发送器

HART FSK信号(常常由本地微控制器单元[MCU]生成),被应用于首个NAND栅极(G1)的输入端。MCU的通用I/O端口的第二个输出,起到一个有效高态“激活”(ENABLE)信号的作用。G1控制两个远端NAND栅极(G2和G3),其输出通过高阻抗分压器R1和R2连接到一起。

由R4和R5组成的第二个分压器,将5V电源分为一个VREF = VCC/2的基准电压,即2.5V.只要“激活”为低电平,G2的输出便为低态,而G3输出为高态。由于高阻抗负载,NAND输出拥有轨到轨功能;R1=R2 时,A1非反向输入VIN的输入电压也为2.5V.

当“激活”为高态时,G2和G3输出相互换相,从而在VIN下形成一个小方波,其围绕VREF对称摆动。VIN的峰值到峰值振幅为:

VIN的峰值到峰值振幅

VS为正5V电源,而R1|| R2为R1和R2的并联组合。

把图2的电阻值插入方程式得到VIN(PP)=200Mv的输入电压摆动,其让VIN摆动位于2.4V和2.6V之间。当VIN升至2.6V时,A1的输出立即达到正饱和状态,并通过R6和R7对C3充电。C3 (VHART) 的实际HART电压线性上升,直到达到2.6V为止。这时,放大器A1迅速退出饱和状态,并起到一个电压跟随器的作用,从而将VHART保持在2.6V.当VIN下降至2.4V时,A1输出进入负饱和状态,并通过R6和R7对C3放电。之后,VHART线性下降,直到其达到2.4V为止。这时,A1退出饱和状态,并再次起到一个电压跟随器的作用,将VHART保持在2.4V.

由此产生的梯形波形在振幅方面与VIN相等,并且围绕VREF做对称摆动。它的转换速率计算方法如下:

转换速率计算方法

其中,VSAT为A1的正或负输出饱和电压。

由于VHART的AC电流比VSAT小,因此VHART可以由其静态电平VREF得到近似值。另外,A1轨到轨输出能力结合R6负载高阻抗,可得到5V和0V的输出饱和电平。假设R7远小于R6,则前面表达式可简化为:

表达式

如果我们把图2的R6和C3组件值插入方程式,则梯形波形的转换速率结果为±1.25 V/ms.

把VHART (200Mv)的峰值到峰值振幅调节为1mA HART峰值到峰值电流信号,让1.25V/ms电压转换速率相当于HART电流信号中6.25 mA/ms的电流转换速率,从而完全位于图1所示极限值范围以内。

要求使用R7来将A1输出隔离于大电容负载C3,目的是维持闭环稳定性。具体要求值取决于A1的单位增益带宽fT以及R6和C3的值。R7的有效近似值计算方法如下:

R7的有效近似值

A1必须具有相当宽的频率响应,并且其转换速率要明显快于HART梯形波形。OPA2374是TI一种低成本的双运算放大器,其拥有5 V/μs的高转换速率和fT = 6.5 MHz的单位增益带宽。另外,放大器输出具有轨到轨驱动能力,其典型静态电流为每个放大器 585μA.

第二个放大器A2把HART信号叠加于可变DC电压VDC上。A2输出电压VOUT变为:

A2输出电压VOUT

使R8到R11值相等,可将上面方程式简化为:

方程式简化

由于VHART由一个200Mv梯形波形(围绕VREF对称摆动)组成,因此A2输出仅包含叠加在可变DC电平上的小HART波形。将VOUT送入TI的XTR115电压到电流转换器,可使每个200mV VDC 相当于1Ma电流。因此,把VDC从0.8V变为4.0V,相当于一个4-20Ma电流范围。

电阻器R8到R11值应足够大,以最小化对C3充电电流的负载影响,但是又不能太大,以免A2输入偏差电流引起误差。适当的电阻值可将VREF从VOUT完全消除,这样VOUT = VDC ± 100 mV.因此,R4和R5取值不当,或者电压电源存在差异,都不会对VOUT的DC电流产生太大影响。

XTR115是一种双线、精密、电流输出转换器,其通过一个工业标准电流环路发送模拟4-20mA信号。这种器件拥有精确的电流调节和输出电流限制功能。它的片上5V电压调节器用于为外部电路供电。为了确保对输出电流IOUT的控制,电流返回引脚IRET起到一个本地接地的作用,并对外部电路中使用的所有电流进行检测。它的输入级拥有100的电流增益,其由两个激光修整增益电阻器RG1和RG2设置:

RG1和RG2

因此,输入电流IIN产生输出电流IOUT,其等于IIN × 100.IIN的电势为0(参考 IRET)时,把输入电压转换为规定输出电流所要求的电阻器值为:

因此,将200mVPPHART电压转换为1mA电流,要求输入电阻为:

另外,RIN对4-20mA电流范围的输入电压范围定义如下:

以及:

HART发送器信号通路的信号电压

图3:HART发送器信号通路的信号电压

结论

简单运算放大器电路可用于为传统4-20mA电流环路设计一个低成本的HART发送器。

图3显示了2V DC输入时HART传输期间不同测试点的信号电压。匹配差分放大器A2的电阻器,移除了输出信号的VREF分量。因此,基准电压偏差对VOUT没有影响。这样,输出信号便围绕2V DC输入做对称摆动。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭