当前位置:首页 > 电源 > 功率器件
[导读]0 引 言 频率测量的方法通常是利用沿触发,对方波信号进行脉冲计量,因此它的精度比一般其他物理量的精度要高很多。除了测量频率时需要用到频率测量模块,许多测量型(如

0 引 言

频率测量的方法通常是利用沿触发,对方波信号进行脉冲计量,因此它的精度比一般其他物理量的精度要高很多。除了测量频率时需要用到频率测量模块,许多测量型(如测压,测相等)系统都是通过转换电路将所需测量的量转化为频率,从而通过测频来提高精度的。所以,提高频率测量的精度是很有必要的。另外,传统的频率测量利用分立器件比较麻烦,精度又比较低,输入信号要求过高,很不利于高性能场合应用。

基于上述原因,在等精度测频法的基础上,这里给出一种基于CPLD的设计方案。同时配备多路程控精密放大来实现更宽范围内的信号测频。这种方案测频精度很高,对输入信号要求比较少,适合于很多需要测频的场合。

1 基于CPLD的数字逻辑器件实现

复杂可编程逻辑器件(Complex Programmable Logic DeVice,CPLD)是从PAL和GAL器件发展出来的,其规模大,结构复杂,属于大规模集成电路范围,是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。
相对而言,用于测频的数字逻辑器件,如D触发器(74LS74)、与门(74LS04)、计数器(74LS393)等都是单片数字逻辑器件,不仅使用起来连接比较繁琐,而且不利于集成化,很难做到高速、高精度的频率测量。这么多数字器件构成一个系统,数字干扰将是一个很难处理的问题,这对模拟小信号的高精度测频将产生极大的影响。这里使用CPLD时,通过Verilog(硬件描述语言)对逻辑器件进行编程,可以很容易地在CPLD内部生成上述数字逻辑芯片,且性能更加优化。同时为CPLD配置高精度的40 MHz晶振(精度高达10-8),对系统高精度测频非常有利。又利用CPLD的高速、低噪特性,在处理小幅度模拟信号时,也降低了难度,减少对外围器件的干扰。

2 多路程控精密放大整形

测频时,输入信号,可以是三角波、正弦波或方波等周期性波形,频率范围为0.1 Hz~10 MHz,幅度在10 mV~5 V之间,处理这样的信号就要折衷考虑。

2.1 多路精密程控放大

小信号的处理至关重要,它很容易受到外界噪声的影响,会影响到测频的精度。这里经过对高性能的运放选择,选取TI公司生产的OPA637,它是一款Difet型高速精密运放,具有高共模抑制比、极低噪声,处理小信号非常合适。电路处理也要非常注意,运放的电源要经过充分去耦才能获得稳定的效果,而数字电路必须与模拟电路分开走线,分开供电。在处理噪声干扰的地线时,需要用到磁珠隔离等技术,这样小信号放大才有保障。

处理不同范围段的信号时,需要得到一个合适的信号处理范围,一路信号放大显然是不够的。需要考虑到采用多路程控放大,这里选择用模拟开关配合峰值检波器进行通道选择,现给出各通道放大倍数选择,如表1所示。



各通道信号放大时,除使用低噪高精度运放OPA637外,还配合使用视频放大器AD811,AD844等模拟芯片,均能发挥良好的效果。
2.2 分段整形设计
处理0.1 Hz~10 MHz的信号,得到稳定度比较高的方波信号,以便于下一级测频电路处理。方案中选择了双路比较器,两路比较器均接为滞回反馈型,利用反馈到参考端的信号构成正反馈,增强抗干扰能力。低频段选择LM311,主要将频率段在0.1 Hz~0.5 MHz的信号比较为方波,而高频段选择MAX913处理的频率段为0.5~10 MHz。其电路如图1所示。



3 等精度测频(相关计数测频)设计

等精度测量法就是人为设定一段时间,由被测信号的上升沿来控制闸门的开启和关闭,测量精度与被测信号频率无关,因而可以保证在整个测量频段内的测量精度保持不变。

图2所示为等精度测量原理时序图,等精度测频法同时使用两个计数器分别对待测信号频率fx和频标信号频率fm在设定的精确门内进行计数,精确门与预置门门限时间相同,fx的上升沿触发精确门。用两个计数器在精确门内对fx和fm分别计数,若两个计数器的计数值分别为M和N,则:
待测信号的频率为:
fx=Mfm/N



必须指出,计数器M对待测脉冲计数,计数是由待测信号上升沿控制,计数值为整数,不存在计数误差。计数器N对频标信号计数,由于精确门的启闭时刻对频标信号来说是随机的,为非整数,故会存在±1的误差。另外,频标信号由晶振提供,而晶体振荡器有很高的稳定度,误差较小。

等精度测频在CPLD内部的逻辑框图实现如图3所示。



4 结 语

本设计利用CPLD进行数字逻辑器件设计,并配合多路精密程控放大,实现了宽输入范围高精度频率测量,频率测量稳定度达10 -7,而且将输入信号的范围进行了有效地拓宽,使这种高精度频率计的应用领域更加广泛。同时,解决了传统分立数字器件测频时存在的问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭