当前位置:首页 > 电源 > 功率器件
[导读]在复杂产品的设计验证中,往往需要多路扫描测量混杂着不同物理参数的测试点。例如需要同时监视流量、压力、温度和应力。测量速度有时会随应用而异。对扫描速度的要求也可能

在复杂产品的设计验证中,往往需要多路扫描测量混杂着不同物理参数的测试点。例如需要同时监视流量、压力、温度和应力。测量速度有时会随应用而异。对扫描速度的要求也可能有很大的不同。例如,对于大热容量的物体,温度变化通常是慢过程,每秒一次的测量速率捕获温度变化也许已经足够。但当温度在短时间内有急剧变化时,就要以更快的扫描率精确跟踪温度变化。使用如Agilent 34980A多功能开关测量单元及相伴Data Logger Pro 软件这类系统,可以达到更高速度的要求。即使正在使用不同的数据记录仪,也可通过相应的测量技巧,保证尽可能快的扫描。

合理安排被测输入信号的次序

当测量中有多种类型的传感器时,最好把相同类型的传感器编组放到一起。这样做有两个理由:其一是把低电平信号,如热偶产生的信号与其它信号分开,从而把干扰和相互影响减到最小。其二是减少数字万用表频繁改变量程和功能所需要的时间。改变数字万用表的量程和功能往往需花几十毫秒或更长的时间, 这将显著延长扫描时间。理想情况下,所有输入最好都是同一类型和同一量程(例如直流电压,10V量程),但这是不现实的,有些输入需要衰减,另一些输入需要放大。因此最好的解决方案是按测量类型和输出范围组织输入信号,如表1所示。

测量技巧

把所有类似的测量编组到一起。先把所有热偶测量放到相邻通道中,然后是各直流电压通道,各交流电压通道,依次类推。从而将改变功能所费的时间减到最小。
如有可能,通过匹配输入电平把改变量程所费的时间减到最小。这样做可能需要衰减或放大某些通道的输入信号。
为完全消除量程和功能改变,把所有输入都变换成一种类型,如直流电压,然后在同一量程,如 10V 量程上读出。
用250Ω 端接所有4-20mA电流环,把电流转换成电压。
选择适当的多路开关

多路开关包括多个开关,在任何给定时间,只有某一通道被接到公共输出。扫描速度受多路开关中所用开关类型的影响。电磁继电器坚固,可承受相对大的电压和电流,但如表2所示,速度是很慢的。干簧继电器更快,通常用于数据采集扫描器中。为实现最高的开关速度,就需要使用 FET 开关。但 FET 不能承受大电压,并且有相对高的“导通”电阻。由于数字万用表有极高的输入阻抗,因此 FET 的导通电阻一般不会成为问题。

测量技巧

按测试速度要求选择正确的多路开关。干簧继电器比电枢继电器快,FET 开关则更快。
如有可能,避免跨多路开关阵列。这需要额外的开关时间。
把容性负载效应减到最小,它会减慢测量速度和要求更长的稳定时间。

优化积分式数字万用表的测量

大多数数据记录仪,如Agilent 34970A数据采集单元和 Agilent 34980A 多功能开关测量单元都用高精度积分式 A/D电压表测量, 各种通过多路开关接入的输入信号。积分式数字万用表很好兼顾了速度和精度。如果不需要 6 1/2 位的分辨率,则可选择较短的积分时间,虽然这会降低噪声抑制能力。大多数积分式A/D有自动零功能,它在两次测量间测量内部短路,从而补偿 A/D 中的失调漂移。但这也使测量时间增加一倍。数据采集系统还要花时间执行命令,控制自动量程,更新显示,测量热偶参考结,以及把热偶电压读数转换为温度。所有这些工作都需要时间。因此要仔细考虑这些功能,去掉那些不影响系统精度的活动,这样做能够显著缩短测量时间。

测量技巧

如果数据记录仪周围环境相对稳定,关掉自动零功能。
直接编程数字万用表量程,不要让它处于自动量程模式。
设置正确的积分时间。至少在一个工频周期(PLC)上的积分, 以减小工频相关噪声的影响,但这也把测量速度限制到每秒 50 个读数。
关断前面板显示和键盘。
用另外的恒流源辅助电阻测量,这样就可进行电压测量。
不要过于频繁地测量热偶参考结。
在计算机中,而不要在数据采集系统内进行热偶电压测量值至温度的变换。
快速而精确地得到小引擎温度分布图

对于从冷启动到最终工作温度的瓦斯引擎,温度能在几秒钟内变化好几百度。为了得到精确的温度分布图,在寻求引擎排放批准而进行鉴定测试时,美国环保署(EPA)考虑强制要求每 100-200ms 进行一次温度测量。由于有多至 40-50个传感器,需要达到的扫描速度为每秒 500 个通道或更高。为此需选择正确类型的多路开关,把同类信号编组,在模数转换器测量系统中把量程和功能的改变减到最少,进行数据转换后处理,而不要把数据转换放在数据采集系统中执行,这样,就能从容满足这些 EPA 要求。

总结

大多数数据采集应用都使用一种以上的传感器。如果没有十分重视采取各种必要措施,混合类型的传感器的扫描速度也许不能达到要求。以上已讨论了合理安排输入信号的次序,为应用选择最好的多路开关形式,以及优化数字万用表测量的方法。采取其中某些或全部措施,就能实现多传感器系统的最高扫描速度。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭