当前位置:首页 > 电源 > 功率器件
[导读]功率放大器类A类、B类和C类功率放大器A类功率放大器的信号有一个偏置点,当输入信号幅度改变时,器件消耗的平均电流并不改变。图1中,M1可以看作是幅度为IDC的电流源。

功率放大器类A类、B类和C类功率放大器

A类功率放大器的信号有一个偏置点,当输入信号幅度改变时,器件消耗的平均电流并不改变。图1中,M1可以看作是幅度为IDC的电流源。


图1. A类功率放大器的结构图

放大器最大输出功率对应的输出阻抗为:

最大输出功率定义为:

因此,A类功率放大器的效率最大值为50% [1]。假设,在保证偏置电流为IDC的同时,M1漏极电压摆幅最低可以到地电位。工作在线性电阻区会使A类CMOS功率放大器的实际效率降低到40%以下。这意味着工作电压确定后,为了保持高效,A类功率放大器的偏置电流必须随着输出功率的改变而改变。由于A类功率放大器的偏置点不随输入信号的改变而改变,所以在注重增益的线性度的应用中,此类功率放大器是最佳结构。

B类和C类功率放大器与A类相比,可以实现更高效率,但通常输出功率较低,并且有较大失真。

A类、B类和C类功率放大器的共同特点是有源器件被视作电压控制电流源,并且不希望其工作在线性电阻区。

D类、E类和F类功率放大器

与A类、B类和C类功率放大器相反,D类、E类和F类CMOS功率放大器通过工作在线性电阻区来优化效率和输出功率。这些功率放大器通常被称作“开关模式”功率放大器。因为这些功率放大器可以在低工作电压下实现高效率,所以被广泛用于ISM频段的收发装置。图2所示,在开关模式的功率放大器中,输出级电路由大信号方波驱动。


图2. 开关模式功率放大器的结构图

可以把输出级晶体管看作一个按照设定频率、占空比进行开关操作的电阻。从图2还可以看出,输出级晶体管含有丰富的谐波成分。这些谐波成分取决于驱动信号的占空比和幅度、场效应管的导通电阻和功率放大器的负载电阻。在D类功率放大器中,通过改变输入信号的占空比改变输出功率,即脉宽调制模式(PWM)。D类功率放大器通常用于输出功率连续变化的音频领域。

对于E类功率放大器,输入信号的占空比恒定不变。匹配网络用于最小化输出级开关导通时的漏极电压。通过最小化输出级开关的导通压降,可以降低开关管的损耗,提高PA的整体效率。

F类功率放大器与E类功率放大器相似,但设计匹配网络时要特别注意谐波阻抗,以实现最高效率。因为要考虑谐波电阻,F类功率放大器匹配网络设计一般更复杂。

开关模式功率放大器

所有Maxim的CMOS ISM频段收发器都提供漏极开路的功放输出。在整个300MHz到450MHz频段内,占空比固定在25%。用户根据所要求的输出功率、电流损耗和谐波参数来设计匹配网络。

图3是开关模式功率放大器输出级的简单模型。


图3. 开关模式功率放大器的简化模型

图中,Rsw是场效应管的导通电阻,Cpa是等效的器件寄生电容总和,Cpkg是封装电容,Cboard是板上电容。表1列出了Maxim ISM频段主要收发器件的开关电阻和电容值。

表1. 开关电阻和电容值

PartDescriptionRsw (, typ)Cpa + Cpkg + Cboard (pF)MAX1472ASK transmitter222.2MAX7044ASK transmitter112.6MAX1479ASK/FSK transmitter222.3MAX7030ASK transceiver222.4MAX7031FSK transceiver222.4MAX7032ASK/FSK transceiver222.4

注意:开关导通电阻的典型值对应于VDD = 2.7V的工作电压;另外,板上寄生电容受布线影响很大。E类、F类功率放大器和匹配网络的设计可以参照文献[2,3,4],读者可以利用这些资料作为技术背景。考虑到本文篇幅,这里只能提及两点:首先,匹配网络的设计必需使功率放大器的效率最高;其次,输出级导通压降较低时,功率放大器的效率最高。

开关模式功率放大器的仿真

在许多低成本ISM频段应用中,系统工程师可能受设计周期、费用、系统复杂度的限制而无法对匹配网络进行优化。小尺寸(高Q值)、价格便宜的天线在发射较高频率时通常有较高效率,但是射频调整电路限制了发射信号的谐波成分。所以匹配网络对谐波分量的抑制尤为重要。考虑到这些因素,我们在分析功率放大器时假定输出匹配网络已经过优化,输出电压为正弦信号。如图4所示。


图4. 开关模式功率放大器的波形

假设功率放大器的负载电阻为RL,输出电压可低至0.1V,功率放大器的效率表示为:

如果电源电压VDD = 3V,开关导通电阻Rsw = 22Ω,负载电阻RL = 400Ω,功率放大器的效率为80%,输出功率为10.2dBm。当然,电压波形、开关导通电阻和负载电阻都是相关的,上式并不能精确计算效率。可利用SPICE建立开关模式功率放大器的理想模型,阻值为11Ω或22Ω的理想电阻与Q值为10的并联谐振腔连接。图5是仿真原理图,图6为仿真结果。


图5. 仿真原理图


图6. 输出功率随负载电变化的仿真结果

图6所示,开关模式的功率放大器最显著的优势之一就是在保证卓越的直流-射频转换效率的同时,通过改变负载电阻,可以在宽范围内改变输出功率。另外,具有较小开关导通电阻的开关模式功率放大器其输出的功率较大,效率较高。较低开关导通电阻的功率放大器的缺点是,需要更大的电流对开关器件的寄生电容进行充放电。

如上所述,为了提高效率,开关放大器的导通必须最小电压附近打开。在一个开关电阻驱动的简单并联谐振电路中,要实现最大效率,就要使功率放大器在工作频率下的视在负载的虚部最小(包括元件的寄生电容、封装和印刷电路板上的寄生电容)。如果网络失谐,功率放大器的效率将显著下降。图7说明Q=10和Q=5时,匹配网络失谐后的结果。


图7. 开关模式功率放大器效率和失谐关系

如图7所示,漏极电流的最小值发生在谐振频率点。这一事实可以用于验证现有匹配网络是否已针对特定工作频率实现了最优化。同时要注意的是,SPICE仿真时假设:开关电阻的打开和闭合都是瞬间完成的;在开关打开和闭合的过程中,开关的寄生电容并不随之改变;谐振电感和电容没有寄生阻抗。这些方面的影响使实际的开关模式功率放大器的性能低于理想情况下的水平。在特殊的应用中,通常采用迭代的方法实现匹配网络的最优化。

结论

综上所述,Maxim在ISM频段的开关模式功率放大器的重要特点是:

开关功率放大器通过工作在线性电阻区实现低工作电压下效率和输出功率间的优化。这一点不同于A类、B类和C类功率放大器。所有Maxim的CMOS ISM频段开关模式功率放大器都提供漏极开路输出。用户根据所需输出功率、电流损耗和谐波参数来设计匹配网络。这种灵活性使用户在保证高效率的同时,可以调节射频功率和电流损耗。为了最大化开关模式功率放大器的效率,开关必须在漏极电压最低时打开,要实现最大效率,就要使开关模式功率放大器在工作频率下所呈现的负载的虚部最小 (包括元件的寄生电容、封装和板上寄生电容)。与功率放大器的负载相关,漏极电流的最小值会出现在谐振频率处。这一事实可以用于验证现有匹配网络是否已针对特定工作频率和负载实现了最优化。

参考文献
[1] Behzad Razavi, RF Microelectronics, Prentice Hall, Engelwood Cliffs, NJ, 1997.
[2] N.O. Sokal and A.D. Sokal, "Class E: A New Class of High Efficiency Tuned Single-Ended Switching Power Amplifiers," IEEE J. Solid-State Circuits, vol. SC-10, pp. 168-176, June 1975.
[3] Scott Kee, Ichiro Aoki, Ali Hajimiri, and David Rutledge, "The Class E/E Family of ZVS Switching Amplifiers," IEEE Transactions on Microwave Theory and Techniques, MTT-Vol.51, No. 6, May, 2003.
[4] High-Efficiency Class-E Power Amplifiers, Part I & II, Eileen Lau, Kai-Wai Chiu, Jeff Qin, John Davis, Kent Potter and David B. Rutledge, QST, Journal of the American Radio Relay League, May & June 1997.

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭