当前位置:首页 > 电源 > 功率器件
[导读] 本文提出了一个预测在放大器的输入和输出端口增加阻性负载以改善稳定性和噪声指数的新方法。该方法在宽广的频率范围内有效,能够用于低噪声放大器(LNA)和宽带放大器。


本文提出了一个预测在放大器的输入和输出端口增加阻性负载以改善稳定性和噪声指数的新方法。该方法在宽广的频率范围内有效,能够用于低噪声放大器(LNA)和宽带放大器。

后续小节中的结果可从Friis噪声方程来理解(等式8)。例如,案例4、5和8的导致最低噪声叠加,4和5小于8。这是因为晶体管带来的衰减,如等式8所示,来自最后那个双口网络的噪声成分的影响被相对较大的放大器增益所减小。

在案例8的例子中,总噪声指数略差于4和5,这是因为衰减是应用于放大器输入端,如等式8所示。该双口网络的总噪声分量体现在全噪声指数Ftotal中。然而,衰减器对于加性噪声是相对无效的,因为并联5kΩ电阻产生的衰减和失配与其它案例相比失非常小的。因此,输入和输出端口上的衰减器对整个放大器噪声指数的影响并不相同,当然劣化程度也取决于特定衰减器的衰减和失配,除了位置。

实现了4种微波放大器测试电路以为实际的放大器确定稳定理论和噪声预测的有效性。有源器件是FHR02X HEMT,也在前面小节作为例子。晶体管靠引脚固定到底板上,如图5种例子所示,嵌入式电阻并联到三个放大器的输入输出端。
从实现角度看并联电阻网络便于实现,因为插入串联隔直电容会影响晶体管的偏置。构造了三个放大器,其稳定电阻设计为200Ω但测出来大约是160Ω的范围,用来研究8种不同的阻性稳定组合,对于于案例3、 5、和8,但具体值不同。分别是仅并联输入、仅并联输出、并联输入输出。选择了200Ω的设计值是因为计算表明该值将带来三种案例的清晰差异。第四个放大器不带稳定电阻是用来测量晶体管本身的离散参数的。同样的偏置T头连接放大器到网络分析仪,为每个晶体管提供工作电流(图6)。
由于实际原因不可能在每个测试电路中使用同一个晶体管,因此四个配置采用不同的具体样品。由于器件到器件离散和噪声参数的离散性,这在测量和预测的比较中引入了参数误差。

图7显示的测量稳定性参数是利用测量的S参数,应用到图6显示的三个稳定放大器,使用等式1计算得到的。图7显示的预测稳定性参数是利用图2所示的方法和测量阻抗值得到的。在输入和输出端带并联电阻的稳定放大器测量和预测稳定参数值之间的差异至少在10GHz处在几个百分点之内。
为了验证前节所述噪声预测部分,测量了两个FHR02X HEMT微波放大器的噪声指数。这通过在测试平台(图6)以Agilent公司(Santa Rosa, CA)的Agilent N8975A噪声指数表替代网络分析仪来完成的,由Agilent N4002A噪声源驱动(图8)。
其它测试条件保持如图6所示。

图9和10显示两个电路到26GHz的测量和预测的放大器增益和噪声指数。图9显示带输出阻性稳定的FHR02X HEMT测量增益,由Agilent E8361获得,以及由Agilent N8975A噪声指数表得到的测量增益和噪声。噪声指数表数据的波纹是由于必须插入噪声指数表的电缆和连接器之间的轻微失配造成的。另方面看,两种增益测量吻合非常好。预测增益失通过图2显示的过程获得的,用以决定整个网络的离散参数。测量和预测放大器增益之间的一致性直到26GHz都在十分之几dB范围内。
图9也显示同一放大器的测量噪声指数,以及数据的最小均方最佳拟合以便与理论值比较。预测噪声指数是通过应用前节所述的过程到测量的放大器离散参数获得的,以及厂家提供的晶体管噪声参数。在10GHz处测量和计算噪声指数之间的不一致在十分之几dB范围内。 在10GHz之上,在两个结果之间出现了随频率增加的系统偏移。需要额外的研究以决定这一差异的来源。

图10比较了测量和测量的带输入阻性稳定FHR02X HEMT放大器的噪声指数以及增益。该图显示与第一个放大器相比在放大器输入端配置电阻使得噪声性能恶化大约2dB。两个测量和预测值之间的一致都与前面获得的结果相似。
本文提出了一个预测在放大器的输入和输出端口增加阻性负载以改善稳定性和噪声指数的新方法。该途径在宽广的频率范围内有效,能够用于LNA和宽带放大器,直到10GHz,预测值都在测量值的十分之几dB范围内。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭