当前位置:首页 > 电源 > 功率器件
[导读]0.引言大四保研到实验室正好碰到师兄师姐们找工作,听到的一些面试常问的内容就是“跨时钟域”、”异步处理“、”异步FIFO“等。然而我看的

0.引言

大四保研到实验室正好碰到师兄师姐们找工作,听到的一些面试常问的内容就是“跨时钟域”、”异步处理“、”异步FIFO“等。然而我看的一些经典的书籍都是这样说的”异步电路很难设计,最好全部使用同步技术进行设计,所有寄存器器使用一个全局时钟驱动“。可在实际项目中,我又发现现代芯片设计中很难只使用一个时钟,时钟分频逻辑、时钟选择多路器,除了多时钟,有时还必须在两个不同的时钟间传递数据。也就是异步电路处理问题(两个没有特定关系的时钟传递数据被认为是异步的)。”异步电路很复杂“会有很多设计的不确定性。

1.亚稳态

时序逻辑中大量使用D触发器,D触发器的一般结构是:两个串联的反相器加两个传输门构成锁存器,两个锁存器串联构成D触发器。D触发器是一种双稳态电路,两个稳定状态”1“、”0“。两个反向器构成的反馈回路可能会产生亚稳态。

 

 

图 1-1 两个反向器反馈回路输出特性

IC设计常见的异步电路处理故障

如图1-1所示,当电压处于两个曲线的交叉点时,在没有任意外部干扰的情况下,电路将保持此状态不变,也就是进入了亚稳态。实际电路不可能完全没有外部干扰,在外部干扰下,电路可能会重新趋于一个稳定状态。(ps:从特性曲线看,如果上升和下降斜率越大,电路能越快从亚稳态电路中恢复过来。)图 1-2 双稳态图示

 

 

建立时间保持时间

建立时间:为了保证触发器可靠的接受输入数据,数据需要在时钟上升沿到来之前保持稳定的最小时间。

保持时间:时钟有效沿后,数据还需要保持的最小时间。

图 1-3 建立保持时间与亚稳时间窗

 

 

建立时间保持时间方程

Tco+Tcomp+Tsu<=T+Tskew;

Tco+Tcomp>=Thd+Tskew;

亚稳态

如果不能满足最小建立时间或最小保持时间,DFF输出将是不定状态,或在高低电平之间震荡,几进入亚稳态。

亚稳态:指触发器无法在某个规定的时间段内达到一个可确认的状态。但触发器进入亚稳态时,既无法预测改单元输出电平,也无法预测何时才能稳定在某个正确电平上。

图 1-4 亚稳态时间窗

 

 

如图所示,当在输入数据在亚稳时间窗变化时,Tco增大,在Tco_max之后还没有稳定的情况就是亚稳态。[!--empirenews.page--]

2.异步数据传输

异步数据传输可能导致亚稳态,如图2-1所示

图 2-1 异步数据传输

 

 

两个时钟CLK1和CLK2没有相关性,无法保证DFF1的输出在DFF2上能满足建立保持时间。CLK1的数据传输到CLK2上可能发生以下情况:

1)满足建立保持时间,数据正确接收

2)实际的建立时间小于临界时间点,数据无法接收3)数据实际建立时间不满足建立时间,但大于临界时间点,数据Tco增大。

4)数据越接近临界时间点变化,延时时间越大,相差很小时,输出无法预测,噪声可使结果出现随机性。

图 2-2 异步传输亚稳态时序

 

 

在CLK1和CLK2没有任何关系的情况下,Q1可能在CLK2上升沿的任何时候跳变,DFF2输出必定有一定的概率进入亚稳态,一旦DFF2进入亚稳态,Tco增大,当Tco增大到大于T+Tskew-Tcomb-Tsu时,DFF2到DFF3会产生建立时间违例,从而产生亚稳态传播。

图 2-3 亚稳态测量电路

 

 

通过改变时钟周期,可测得一系列不同Tco的MTBF值。

3.异步处理电路

针对不同的异步数据可以采用不同的同步处理方式。

1)电平信号:多级串联的DFF(2级以上)。

2)脉冲信号:

①在慢时钟到快时钟域传递,且连个时钟相差比较大时,慢时钟的脉冲可以被快时钟当做电平,使用电平同步技术同步后,在采用边沿检测电路即可得到相应的脉冲信号。

 

 

②快时钟到慢时钟,使用脉冲同步器,下图给出了两个电路,不归0翻转电路,反馈清0电路IC设计常见的异步电路处理故障

3)多bit数据:使用握手协议或者异步FIFO。在握手协议中,异步的REQ/ACK需要使用上述同步技术进行同步处理,异步FIFO也是如此。关于FIFO涉及的内容比较多,后续专门讲解。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭