当前位置:首页 > 电源 > 功率器件
[导读]  超级电容器由于其功率密度高、充放电时间短、循环寿命长、工作温度范围宽等突出优点,在汽车领域和自然能源采集等领域得到广泛的应用。而对于超级电容,你对它的了解有

  超级电容器由于其功率密度高、充放电时间短、循环寿命长、工作温度范围宽等突出优点,在汽车领域和自然能源采集等领域得到广泛的应用。而对于超级电容,你对它的了解有多少呢?本文将从超级电容工作原理和特点、选择及其大功率特性应用进行解析,让大家更加了解超级电容。

  超级电容工作原理和特点

  超级电容是一种电容量很大的电容器。电容器的电容量取决于电极间距离和电极表面积,为了获得更大的电容量,超级电容尽可能地缩小电极间距离、增加电极表面积。

  当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态;若电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液界面上的电荷响应减少。不同于利用化学反应的蓄电池,超级电容器的充放电过程是物理过程,没有化学反应。所采用材料安全、无毒。

  超级电容可以在数十秒到数分钟内快速充电,充放电寿命很长,可达50万次,或9万小时;可以提供很高的放电电流,如2700F的超级电容器额定放电电流不低于950A,放电峰值电流可达1680A。蓄电池通常不能有如此高的放电电流,否则寿命将大大缩短。

  超级电容器可以在很宽的温度范围内正常工作(-40℃~+70℃);可以任意并联使用来增加电容量,如采取均压措施后,还可以串联使用。

  超级电容的选择

  很多用户都遇到相同的问题,就是怎样计算一定容量的超级电容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。

  超级电容器的两个主要应用:高功率脉冲应用和瞬时功率保持。高功率脉冲应用的特征:瞬时流向负载大电流;瞬时功率保持应用的特征:要求持续向负载提供功率,持续时间一般为几秒或几分钟。瞬时功率保持的一个典型应用:断电时磁盘驱动头的复位。不同的应用对超电容的参数要求也是不同的。高功率脉冲应用是利用超电容较小的内阻(R),而瞬时功率保持是利用超电容大的静电容量(C)。

  下面提供计算公式和应用实例:

  1. C(F): 超电容的标称容量;

  2. R(Ohms):超电容的标称内阻;

  3. ESR(Ohms):1KZ 下等效串联电阻;

  4. Uwork(V):在电路中的正常工作电压

  5. Umin(V):要求器件工作的最小电压;

  6. t(s): 在电路中要求的保持时间或脉冲应用中的脉冲持续时间;

  7. I(A): 负载电流;

  8. Udrop(V):在放电或大电流脉冲结束时,总的电压降;

  瞬时功率保持应用

  超电容容量的近似计算公式,该公式根据,保持所需能量=超电容减少能量。

  保持期间所需能量=1/2I(Uwork+ Umin)t;

  超电容减少能量=1/2C(Uwork2 -Umin2),

  因而,可得其容量(忽略由IR 引起的压降)C=(Uwork+ Umin)t/(Uwork2 -Umin2)

  如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作?

  由以上公式可知:

  工作起始电压 Vwork=5V;工作截止电压 Vmin=4.2V;工作时间 t=10s;工作电源 I=0.1A所需电容容量为:

  C=(Vwork+ Vmin)It/( Vwork2 -Vmin2)

  =(5+4.2)*0.1*10/(52 -4.22)

  =1.25F

  根据计算结果,可以选择5.5V 1.5F电容就可以满足需要了。

  超级电容的大功率特性应用

  1、低温启动

  在我国北方的冬季,因气温过低,以蓄电池作为启动电源的重卡、坦克、装甲车等经常难以启动。在低温环境下放电能力明显下降、内阻急剧增加会导致蓄电池低温大电流放电性能及输出功率降低,造成车辆启动困难(时间长),甚至无法启动,影响正常的工作和军事战备。超级电容拥有在-40~+70℃温度范围内正常工作的特性,可以为低温启动提供优异的解决方案,并可以起到保护蓄电池、延长蓄电池使用寿命的作用。

  案例:我军某型步兵战车、俄罗斯陆军的坦克装甲车辆在严寒环境中启动就广泛采用超级电容器应急启动电源系统,实现了战车在低温负四十度条件下的紧急启动。

  2、飞机启动

  目前军用飞机(包含直升飞机)启动用电源车主要存在的问题是在某些冲击或浪涌状态下发电机输出功率无法满足要求,造成发动机转速和输出功率急速下降甚至熄火。对于蓄电池启动车,可直接和蓄电池并联超级电容器模组,以提供飞机发动机启动瞬间所需的大电流,提高启动性能和战时便携机动性能,缩短启动时间,降低瞬间大电流对蓄电池造成的损害。

  案例:在5.12汶川地震抢险救灾中,使用超级电容器作为直升机的启动电源起到关键作用,获得军方的好评。

  3、在近防武器中的应用

  舰载和陆基近程高速防空火炮系统使用的是外挂电源系统,需要电池等储能器件组成储能系统,但由于火炮在射击过程中需要瞬时大功率的能量支持,电池的功率性能较差,频繁大功率放电势必使其寿命急剧衰减,同时电池还存在需定期进行维护、高低温性能差等一系列问题。超级电容器具有比脉冲功率较蓄电池高近十倍,可以实现频繁大功率放电,免维护,高低温性能好及比容量高出普通电容器百倍以上等诸多优点,使其可作为替代电池的性能优异的储能器件。

  4、在车辆加速、爬坡等情况中的应用

  车用蓄电池必须具有一定的容量来满足车辆的设计需要,同时还必须具有一定的峰值功率特性来满足汽车在加速和爬坡等特殊情况下的需求。车辆在行驶过程中由于突然加速、制动或爬坡、载重等恶劣条件造成的高功率负载状况需要蓄电池来实现高功率放电,而蓄电池的高功率性能不足,即使能实现大功率放电,也对其寿命有影响,如果使用超级电容器与蓄电池并联,发挥超级电容的大功率优势,可以有效地弥补电池功率不足的问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭