当前位置:首页 > > 充电吧
[导读]NVIDIA在北京召开沟通会,由亚太区解决方案架构主管赵立威详解了RAPIDS开源GPU数据加速平台。该平台发布于2018年10月10日的GTC Europe大会上,是一款针对数据科学和机器学习的GP

NVIDIA在北京召开沟通会,由亚太区解决方案架构主管赵立威详解了RAPIDS开源GPU数据加速平台。

该平台发布于2018年10月10日的GTC Europe大会上,是一款针对数据科学和机器学习的GPU加速平台,为数据科学家提供标准化的流水线式工具,数据处理速度较仅用CPU提升50倍。

沟通会后,我们与NVIDIA中国高级解决方案架构师何萍,以及NVIDIA亚太区解决方案高级总监赵立威等高管就RAPIDS平台和GPU加速数据科学和机器学习进行了进一步的交流。

据分析师估计,面向数据科学和机器学习的服务器市场每年价值约为200亿美元,加上科学分析和深度学习市场,高性能计算市场总价值大约为360亿美元,且该市场还在持续快速发展,几乎每一家企业都在用数据驱动来增强自己的核心竞争力。

“数据分析和机器学习是高性能计算市场中最大的细分市场,不过目前尚未实现加速,”NVIDIA创始人兼首席执行官黄仁勋在发布RAPIDS时提到,“全球最大的行业均在海量服务器上运行机器学习算法,目的在于了解所在市场和环境中的复杂模式,同时迅速、精准地做出将直接影响其基础的预测。”

一个最典型的大数据分析流程大致分为数据准备、数据合并、数据降维三个步骤,很多数据特征需要靠行业或专业领域的专家去理解,并事先把它们提取出来。因此在Machine Learning中需要训练过程,这是一个不断的循环过程,在不断优化、不断调整参数的过程中,提高训练过程的精度,从而得到更准确的预测结果。

为了支持这样一个大数据分析流程,需要用到DASK、PYTHON、PANDAS、SKLEARN、NUMPY、Apache Arrow等组件。RAPIDS构建于Apache Arrow、PANDAS和SKLEARN等组件之上,通过CUDF数据过滤、CUML机器学习、CUGRAPH数据图像化来加速处理数据,为最流行的Python数据科学工具链带来了GPU提速。

这三套软件工具都是基于CUDA开发,可以把它们看成是CUDA的一部分。其中CUDF与Pandas的功能非常类似,Pandas的所有功能都可以在CUDF里找到对应的API;CUML则对应SKLEARN,无论是分类、聚类、回归等算法都可以在CUML里面找到。而CUGRAPH目前尚未正式推出,预计会在明年正式集成到RAPIDS中。

赵立威向我们透露,RAPIDS非常易与此前的计算框架整合,虽然不能说是“无代码”过渡,但代价非常小,且数据处理效率可提升50倍以上。同时为了将更多的机器学习库和功能引入RAPIDS,NVIDIA广泛地与开源生态系统贡献者展开合作,其中包括Anaconda、BlazingDB、Databricks,以及迅速增长的Python数据科学库pandas等等。

此外,黄仁勋在GTC Europe大会上展示RAPIDS时用的DGX-2,使用了16块Tesla V100计算卡,每块卡配有32GB HBM2显存,带宽高达900GB/s,两块计算卡之间通过300GB/s的NV Switch总线互联,使整台服务器拥有了un-block无阻滞通讯能力,总算力高达2PFLOPs(半精度浮点),数据处理能力相当于5台DGX-1。

除了DGX-2和DGX-1,NVIDIA还有一系列合作伙伴提供的很多的硬件产品,如一些ODM、OEM厂商基于HGX-1和HGX-2两种架构标准生产的许多不同类型服务器,甚至包括上一代Pascal架构的GPU的服务器,都可以都可以很好的支撑RAPIDS的运行和使用。

赵立威笑称,由于此前数据处理的速度太慢,数据科学家往往有大量的空闲等待时间,可以悠闲的喝咖啡。应用RAPIDS平台之后,等待时间变短,需要数据科学家创造性参与的部分相应变多了,数据科学家这一工作可能不再是美差。

当然,数据分析和机器学习领域的持续走热,看中这片市场的也不只NVIDIA一家。上周赛灵思刚刚推出基于UltraScale+ FPGA打造的数据中心和AI加速卡Alveo U200和U250,号称实时推断吞吐量比高端CPU高出20倍。

赛灵思数据中心副总裁Manish Muthal表示,Alveo加速器卡的推出进一步推进了赛灵思向平台公司的转型,使不断增长的应用合作伙伴生态系统以比以往更快的速度加速创新,并将与应用生态系统展开合作,共同向客户推出采用Alveo的各种可产品化的解决方案。

与NVIDIA推出的RAPIDS平台相比,二者通过一硬一软的形式覆盖了几乎相同的范围,对此赵立威对我们表示,数据分析和机器学习市场尚未探明其特定边界,领域内应用场景非常多样化,无论是基于FPGA还是ASIC进行异构加速都是可行的,完全取决于针对不同的场景所产生的不同需求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

液压舵机壳体是航空液压操纵系统的核心零件 , 内部包含大量复杂流道 。传统的流道路径人工设计方法效率低下 , 结果一致性差 。针对该问题 , 提出了一种基于混合近端策略优化(HPP0算法)的流道路径规划算法 。通过分析流...

关键字: 液压流道规划 机器学习 HPP0算法 减材制造 液压舵机壳体

深入探索这一个由 ML 驱动的时域超级采样的实用方法

关键字: 机器学习 GPU 滤波器

传统的网络安全防护手段多依赖于预先设定的规则和特征库,面对日益复杂多变、层出不穷的新型网络威胁,往往力不从心,难以做到及时且精准的识别。AI 技术的融入则彻底改变了这一局面。机器学习算法能够对海量的网络数据进行深度学习,...

关键字: 网络安全 机器学习 辅助决策

人工智能(AI)和机器学习(ML)是使系统能够从数据中学习、进行推理并随着时间的推移提高性能的关键技术。这些技术通常用于大型数据中心和功能强大的GPU,但在微控制器(MCU)等资源受限的器件上部署这些技术的需求也在不断增...

关键字: 嵌入式系统 人工智能 机器学习

北京——2025年7月30日 自 2018 年以来,AWS DeepRacer 已吸引全球超过 56 万名开发者参与,充分印证了开发者可以通过竞技实现能力成长的实践路径。如今,亚马逊云科技将通过亚马逊云科技AI联赛,将这...

关键字: AI 机器学习

2025年7月28日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 持续扩展其针对机器学习 (ML) 工作优化的专用解决方案产品组合。

关键字: 嵌入式 机器学习 人工智能

在这个高速发展的时代,无论是健身、竞技、兴趣活动,还是康复训练,对身体表现的感知与理解,正成为提升表现、实现突破的关键。如今,先进技术正为我们架起一座桥梁,将每一次身体活动转化为有价值的洞察,帮助我们更聪明地训练、更高效...

关键字: 传感器 机器学习 IMU

在科技飞速发展的当下,边缘 AI 正经历着一场深刻的变革。从最初的 TinyML 微型机器学习探索低功耗 AI 推理,到边缘推理框架的落地应用,再到平台级 AI 部署工具的兴起以及垂类模型的大热,我们已经成功实现了 “让...

关键字: 机器学习 边缘 AI 无人机

在AI算力需求指数级增长的背景下,NVIDIA BlueField-3 DPU凭借其512个NPU核心和400Gbps线速转发能力,为机器学习推理提供了革命性的硬件卸载方案。通过将PyTorch模型量化至INT8精度...

关键字: PyTorch 机器学习 DPU

中国,北京,2025年7月17日——随着AI迅速向边缘领域挺进,对智能边缘器件的需求随之激增。然而,要在小尺寸的微控制器上部署强大的模型,仍是困扰众多开发者的难题。开发者需要兼顾数据预处理、模型选择、超参数调整并针对特定...

关键字: 边缘AI 嵌入式 机器学习
关闭