当前位置:首页 > 电源 > 功率器件
[导读]碳化硅 (SiC) 因其更高的开关频率和更高的结温而被称为汽车行业传统 Si IGBT 器件的继承者。此外,在过去五年中,汽车行业已成为基于 SiC 的逆变器的公共试验场。事实证明,通过 SiC 转换器实现 DC 到 AC 的基本转换比硅 (Si) 转换器更小、更轻且更高效,因此宽带隙器件在汽车行业的潜力将显着增长。

碳化硅 (SiC) 因其更高的开关频率和更高的结温而被称为汽车行业传统 Si IGBT 器件的继承者。此外,在过去五年中,汽车行业已成为基于 SiC 的逆变器的公共试验场。事实证明,通过 SiC 转换器实现 DC 到 AC 的基本转换比硅 (Si) 转换器更小、更轻且更高效,因此宽带隙器件在汽车行业的潜力将显着增长。

然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供应方面,并网太阳能发电系统和通过高压直流 (HVDC) 链路传输能源对于低碳能源的生产和分配也至关重要。

这些应用程序的一个共同主题是更高系统电压的潜在作用,因此更高电压的功率设备。在电动汽车 (EV) 中,从 400 V 转变为 800 V 的好处主要是可能的更快充电速率。在太阳能逆变器中,从 1,000-V 到 1,500-V 系统的持续转变正在减少光伏串、逆变器、电缆和直流接线盒的数量——所有这些都可以提高效率并节省成本。在标称电压为数百千伏的千兆瓦 HVDC 装置中,较高的单个设备额定值会减少多级堆栈中所需的设备数量,从而减少维护和整体系统尺寸。

SiC 功率器件有可能成为这些领域的关键推动力。然而,今天,市场上可用的 SiC 器件范围非常窄,从 650 V 到 1,200 V,只有少数 1,700-V 器件可用。虽然 3,300 V 在技术上看起来触手可及,但只有GeneSiC和 Microchip 提供此电压级别的器件。

当然,这种对所提供汽车奖品的单一关注是可以理解的。争夺该行业市场份额的竞赛导致公司努力提高产能、采用 200 毫米晶圆并提高产量。这为打开高压市场所需的大量研发活动留下了空间,相比之下,高压市场相对较小。

值得庆幸的是,研究部门一直在努力工作,已经设计、制造和试用了许多更高电压的 SiC 技术演示器,让我们很好地了解了 SiC 超结 (SJ) MOSFET、IGBT 和晶闸管的影响。可能对这些高压应用。

电压上升,而不是下降?

650 V 仍将是 SiC MOSFET 的底线,这是一个相当安全的预测。图 2 显示了单极极限图,它描绘了当今的商用 SiC 器件,并绘制了它们的电阻与阻断电压的关系图。这揭示了该技术的局限性。随着电压阻断漂移区在 650 V 时的厚度减小到仅 5 µm,器件的电阻已经减小到这样的程度,即来自 SiC 沟道区和衬底的固定电阻占主导地位,从而阻止了进一步缩小尺寸。反抗。虽然在未来几代中改进 650-V MOSFET 似乎有相当大的余地,但很难将这些固定电阻降低到足以支持商用 300-V SiC MOSFET 的程度。

在这些低电压下,没有通道的器件(例如Qorvo/UnitedSiC 的级联 JFET)具有 RDS(on) 优势:可以进行一些晶圆减薄,从而实现电阻非常低的 SiC FET。实际上,考虑到使用行业兼容的方法可以进一步提高 SiC 沟道迁移率的实际限制,SiC JFET 可能是唯一可以实现低于 600 V 额定电压的器件。

扩大碳化硅

表示当前 SiC 技术限制的点划线暗示的是,虽然 SiC 在 650 V 和 1,200 V 是一种很好的技术,但它有可能在更高的电压下变得更好。由于漂移区被缩放到 30 µm 以支持额定电压为 3.3 kV 的器件,其电阻超过了基板和通道的电阻,从而使器件更接近技术极限。因此,在未来,经过磨练以达到当今 SiC 器件质量的高压 SiC MOSFET 在高达 10 kV 的电压下将比现有的 Si 技术具有更大的优势。

此外,对电网应用的更高电压设备类型敞开大门,例如 15kV IGBT 和 20+ kV 晶闸管。在通过研磨和 CMP 去除衬底之前,通过在 N+ 衬底上外延生长来开发这些技术已经取得了足够的进展。此外,生长后的 SiC 中的载流子寿命极低已通过寿命增强氧化工艺得到改善,因此这些额定电压为 20+ kV 的双极器件将具有与硅表亲相似的低传导损耗。

从技术上讲,几乎没有阻止 SiC MOSFET 技术的规模化。3.3-kV 器件在学术文献中已经相当成熟,并且已经存在制造高达约 10 kV 的优质外延层所需的技术。寻找研发时间和能力来生产这些设备而不是汽车相关产品感觉就像是剩下的最大障碍。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭