当前位置:首页 > 模拟 > 模拟技术
[导读]今天,小编将在这篇文章中为大家带来N沟道MOSFET驱动电路设计的有关报道

今天,小编将在这篇文章中为大家带来N沟道MOSFET驱动电路设计的有关报道,通过阅读这篇文章,大家可以对MOSFET驱动电路设计具备清晰的认识,主要内容如下。

一、驱动电路

驱动电路的基本任务,就是将信息电子电路传来的信号按照其控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通或关断的信号。对半控型器件只需提供开通控制信号,对全控型器件则既要提供开通控制信号,又要提供关断控制信号,以保证器件按要求可靠导通或关断。驱动电路隔离技术一般使用光电耦合器或隔离变压器(光耦合;磁耦合)。 [1]由于 MOSFET 的工作频率及输入阻抗高,容易被干扰,故驱动电路应具有良好的电气隔离性能,以实现主电路与控制电路之间的隔离,使之具有较强的抗干扰能力,避免功率级电路对控制信号的干扰。

优良的驱动电路对变换器性能的影响:

1.提高系统可靠性

2.提高变换效率(开关器件开关、导通损耗)

3.减小开关器件应力(开/关过程中)

4.降低EMI/EMC

二、N沟道MOSFET驱动电路实现

本节描述一个N沟道MOSFET驱动电路的示例。

1、基本驱动电路

图2.1显示了一个基本的MOSFET驱动电路。在实际设计驱动电路时,必须考虑被驱动MOSFET的电容及其使用条件。

设计一款N沟道MOSFET驱动电路!超详细!!

2、逻辑驱动

由于把MOSFET作为开关应用(负载开关)的需求日益增长,MOSFET仅在电路工作时在电路中提供导电路径,这样可以降低电子设备的功耗。

设计一款N沟道MOSFET驱动电路!超详细!!

3、 驱动电压转换

(1)将驱动电压转换为15V

图2.3显示了用数字逻辑驱动MOSFET的示例。当MOSFET不能在5V下驱动时,该电路来提高驱动电压。R2与栅极电阻R3串联增加栅极驱动电阻,使MOSFET难以在饱和模式下驱动。这降低了MOSFET的开关速度,因此增加了开关损耗。相反,减小R2导致在MOSFET关断期间有较大的漏极电流ID流向驱动电路,增加驱动电路的功耗。

设计一款N沟道MOSFET驱动电路!超详细!!

(2)推挽电路

图2.3所示电路的缺点是,提升驱动电压会增加驱动电路的功耗。这个问题可以通过增加一个推挽电路来解决,如图2.4所示。

设计一款N沟道MOSFET驱动电路!超详细!!

4、半桥或全桥的高端驱动

图2.5展示了如何在半桥或全桥配置中使用MOSFET。为了接通上管Q1,必须向其栅极施加较高电压。

设计一款N沟道MOSFET驱动电路!超详细!!

4.1、使用高压器件和自举电路(例如高压IC)

图2.5所示为一个使用高压器件和自举电路驱动高边器件的电路示例。开关频率是有限的,这取决于输出电容和电平转换器的损耗。

4.2、脉冲变压器驱动(绝缘开关)

脉冲变压器的使用无需单独的驱动电源。然而,它在驱动电路的功耗方面具有缺点。脉冲变压器有时用于将MOSFET与其驱动器隔离,以保护驱动电路免受MOSFET故障的影响。

图2.6显示了一个简单电路的例子。本电路中齐纳二极管的作用是快速复位脉冲变压器。图2.7所示的电路有一个额外的PNP晶体管,以提高开关性能。

设计一款N沟道MOSFET驱动电路!超详细!!

图2.8所示电路有一个电容与一个脉冲变压器串联,以便在MOSFET关断期间向MOSFET施加反向偏置,从而提高开关速度。由于电容阻断了DC偏置,因此其还防止脉冲变压器达到饱和点。

设计一款N沟道MOSFET驱动电路!超详细!!

4.3、使用光耦和浮动电源

光耦也可用于驱动MOSFET栅极。光耦输出需要单独的电源。若要使用光耦驱动半桥或全桥的高边,则需要一个浮动电源。

设计一款N沟道MOSFET驱动电路!超详细!!

以上便是小编此次想要和大家共同分享的内容,如果你对本文内容感到满意,不妨持续关注我们网站哟。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭