当前位置:首页 > 模拟 > 模拟技术
[导读]今天,小编将在这篇文章中为大家带来MOSFET驱动电路的有关报道,通过阅读这篇文章,大家可以对MOSFET驱动电路具备清晰的认识,主要内容如下。

今天,小编将在这篇文章中为大家带来MOSFET驱动电路的有关报道,通过阅读这篇文章,大家可以对MOSFET驱动电路具备清晰的认识,主要内容如下。

一、MOSFET驱动电路主要任务及对应的电路设计

MOSFET驱动电路的基本任务是提供足够的电流和电压,以控制MOSFET的开启和关断过程,实现所需的电流和电压输出。以下是MOSFET驱动电路的主要任务:

1. 调节输入信号电平:MOSFET驱动电路需要将输入信号的逻辑电平转换为足够的电压来控制MOSFET的开启和关断。通常,输入信号电平应匹配驱动电路的工作电压范围。

2. 提供足够的驱动电流:MOSFET需要足够的电流来快速充放电栅极,以实现快速开启和关断。驱动电路应提供足够的驱动电流,以确保MOSFET能够在短时间内切换到所需的电流状态。

3. 控制开关速度:MOSFET驱动电路要能够控制MOSFET的开启和关断速度。通过精确地控制充放电栅极的电压波形和过渡时间,可以最大限度地降低功耗和电压波形失真,并提高系统的效率。

4. 提供保护功能:驱动电路通常还包括保护功能,以保护MOSFET和整个系统免受过电流、过温和过压等问题的损害。这些保护机制可以通过监测电流和温度等参数,并采取适当的措施来确保系统的安全运行。

5. 支持低功耗操作:驱动电路还应能够在低功耗模式下工作,尽量减少功耗并延长系统的电池寿命。这涉及到选择合适的工作模式、优化电路设计和控制策略等。

常用的MOSFET驱动电路结构如图1所示,驱动信号经过图腾柱放大后,经过一个驱动电阻Rg给MOSFET驱动。其中Lk是驱动回路的感抗,一般包含MOSFET引脚的感抗,PCB走线的感抗等。在现在很多的应用中,用于放大驱动信号的图腾柱本身也是封装在专门的驱动芯片中。本文要讲的问题就是对于一个确定的功率管,如何合理地设计其对应的驱动电路。

MOSFET驱动电路设计,分立器件组成的MOSFET驱动电路分享!

图1 常用的MOSFET驱动电路

注1:图中的Rpd为MOSFET栅源极的下拉电阻,其作用是为了给MOSFET栅极积累的电荷提供泄放回路,一般取值在10k~几十k这一数量级。由于该电阻阻值较大,对于MOSFET的开关瞬态工作情况基本没有影响,因此在后文分析MOSFET的开关瞬态时,均忽略Rpd的影响。

注2:Cgd,Cgs,Cds为MOSFET的三个寄生电容,在考虑MOSFET开关瞬态时,这三个电容的影响至关重要。

二、分立器件组成的MOSFET驱动电路

由分立器件组成的驱动电路((如图所示),驱动电路工作原理如下:

A.当HS为高电平时,Q7、Q4导通,Q6关闭,电容C4上的电压(约14V)经过Q4、D3、R6加到Q5的栅极,使Q5导通。在导通期间,Q5的源极电压(Phase)接近电源电压Vdc,所以电容两端的电压随着Phase电压一起浮动,电容C4亦称为自举电容。Q5靠C4两端的电压来维持导通。

B. 当HS为低电平时,Q7、Q4关闭,Q6导通,为Q5的栅极提供放电回路,从而使Q5很快关闭。当Q5关闭后,由于下管的开通或负载的作用,使得Phase电压下降接近0V,从而使C4经过+15V→D2→C4→GND回路充电,为下一次导通做好准备。

C. 当LS为低电平时,Q8、Q11导通,Q10关闭,驱动电路通过R11为下管Q9的栅极充电,使Q9导通。

D. 当LS为高电平时,Q8、Q11关闭,Q10导通,为Q9的栅极提供放电回路,使Q9关断。

E. 当HS和LS同时为高电平时,上管开通下管关闭。当HS和LS同时为低电平时,上管关闭下管开通。在实际应用中,为了避免上下管同时开通,HS和LS的逻辑要靠MCU或逻辑电路来保证。

以上便是小编此次带来的全部内容,十分感谢大家的耐心阅读,想要了解更多相关内容,或者更多精彩内容,请一定关注我们网站哦。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭