当前位置:首页 > 模拟 > 模拟技术
[导读]今天,小编将在这篇文章中为大家带来MOSFET驱动电路的有关报道,通过阅读这篇文章,大家可以对MOSFET驱动电路具备清晰的认识,主要内容如下。

今天,小编将在这篇文章中为大家带来MOSFET驱动电路的有关报道,通过阅读这篇文章,大家可以对MOSFET驱动电路具备清晰的认识,主要内容如下。

一、MOSFET驱动电路主要任务及对应的电路设计

MOSFET驱动电路的基本任务是提供足够的电流和电压,以控制MOSFET的开启和关断过程,实现所需的电流和电压输出。以下是MOSFET驱动电路的主要任务:

1. 调节输入信号电平:MOSFET驱动电路需要将输入信号的逻辑电平转换为足够的电压来控制MOSFET的开启和关断。通常,输入信号电平应匹配驱动电路的工作电压范围。

2. 提供足够的驱动电流:MOSFET需要足够的电流来快速充放电栅极,以实现快速开启和关断。驱动电路应提供足够的驱动电流,以确保MOSFET能够在短时间内切换到所需的电流状态。

3. 控制开关速度:MOSFET驱动电路要能够控制MOSFET的开启和关断速度。通过精确地控制充放电栅极的电压波形和过渡时间,可以最大限度地降低功耗和电压波形失真,并提高系统的效率。

4. 提供保护功能:驱动电路通常还包括保护功能,以保护MOSFET和整个系统免受过电流、过温和过压等问题的损害。这些保护机制可以通过监测电流和温度等参数,并采取适当的措施来确保系统的安全运行。

5. 支持低功耗操作:驱动电路还应能够在低功耗模式下工作,尽量减少功耗并延长系统的电池寿命。这涉及到选择合适的工作模式、优化电路设计和控制策略等。

常用的MOSFET驱动电路结构如图1所示,驱动信号经过图腾柱放大后,经过一个驱动电阻Rg给MOSFET驱动。其中Lk是驱动回路的感抗,一般包含MOSFET引脚的感抗,PCB走线的感抗等。在现在很多的应用中,用于放大驱动信号的图腾柱本身也是封装在专门的驱动芯片中。本文要讲的问题就是对于一个确定的功率管,如何合理地设计其对应的驱动电路。

MOSFET驱动电路设计,分立器件组成的MOSFET驱动电路分享!

图1 常用的MOSFET驱动电路

注1:图中的Rpd为MOSFET栅源极的下拉电阻,其作用是为了给MOSFET栅极积累的电荷提供泄放回路,一般取值在10k~几十k这一数量级。由于该电阻阻值较大,对于MOSFET的开关瞬态工作情况基本没有影响,因此在后文分析MOSFET的开关瞬态时,均忽略Rpd的影响。

注2:Cgd,Cgs,Cds为MOSFET的三个寄生电容,在考虑MOSFET开关瞬态时,这三个电容的影响至关重要。

二、分立器件组成的MOSFET驱动电路

由分立器件组成的驱动电路((如图所示),驱动电路工作原理如下:

A.当HS为高电平时,Q7、Q4导通,Q6关闭,电容C4上的电压(约14V)经过Q4、D3、R6加到Q5的栅极,使Q5导通。在导通期间,Q5的源极电压(Phase)接近电源电压Vdc,所以电容两端的电压随着Phase电压一起浮动,电容C4亦称为自举电容。Q5靠C4两端的电压来维持导通。

B. 当HS为低电平时,Q7、Q4关闭,Q6导通,为Q5的栅极提供放电回路,从而使Q5很快关闭。当Q5关闭后,由于下管的开通或负载的作用,使得Phase电压下降接近0V,从而使C4经过+15V→D2→C4→GND回路充电,为下一次导通做好准备。

C. 当LS为低电平时,Q8、Q11导通,Q10关闭,驱动电路通过R11为下管Q9的栅极充电,使Q9导通。

D. 当LS为高电平时,Q8、Q11关闭,Q10导通,为Q9的栅极提供放电回路,使Q9关断。

E. 当HS和LS同时为高电平时,上管开通下管关闭。当HS和LS同时为低电平时,上管关闭下管开通。在实际应用中,为了避免上下管同时开通,HS和LS的逻辑要靠MCU或逻辑电路来保证。

以上便是小编此次带来的全部内容,十分感谢大家的耐心阅读,想要了解更多相关内容,或者更多精彩内容,请一定关注我们网站哦。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

-三款新器件助力提升工业设备的效率和功率密度-

关键字: SiC MOSFET 开关电源

在电子系统中,MOSFET(金属氧化物半导体场效应晶体管)作为一种常用的开关器件,其开关过程中的电磁干扰(EMI)问题备受关注。

关键字: MOSFET

【2025年8月1日,德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日推出了采用顶部散热(TSC)Q-DPAK封装的CoolSiC™ MOS...

关键字: MOSFET 电动汽车 伏逆变器

7月18日,由鲁欧智造(山东)数字科技有限公司主办、中关村集成电路设计园、北航确信可靠性联合实验室协办的第三届用户大会在北京朗丽兹西山花园酒店成功举办。本次大会以“开启电子热管理技术圈的正向设计之门”为主题,吸引了来自全...

关键字: SiC MOSFET 功率半导体

许多电源转换应用都需要支持宽输入或输出电压范围。ADI公司的一款大电流、高效率、全集成式四开关降压-升压型电源模块可以满足此类应用的需求。该款器件将控制器、MOSFET、功率电感和电容集成到先进的3D集成封装中,实现了紧...

关键字: 稳压器 控制器 MOSFET

在电力电子系统中,MOSFET(金属氧化物半导体场效应晶体管)作为核心开关器件,其可靠性直接影响系统寿命。据统计,功率器件失效案例中,MOSFET占比超过40%,主要失效模式包括雪崩击穿、热失控、栅极氧化层击穿等。本文从...

关键字: MOSFET 电力电子系统

在新能源发电、电动汽车充电等高频电力电子应用中,全桥逆变器作为核心功率转换单元,其开关管(MOSFET/IGBT)的VDS(漏源极电压)波形质量直接影响系统效率与可靠性。实测数据显示,超过40%的逆变器故障源于VDS波形...

关键字: 全桥逆变器 驱动电路

在数据中心直流供电系统向高密度、高频化演进的进程中,碳化硅(SiC)MOSFET凭借其低导通电阻、高频开关特性及高温稳定性,成为替代传统硅基IGBT和MOSFET的核心器件。然而,其高速开关过程中产生的直流电磁干扰(EM...

关键字: 碳化硅 MOSFET 直流EMI

美国宾夕法尼亚州利哈伊山谷——2025年7月17日——iDEAL Semiconductor的SuperQ™技术现已全面量产,首款产品为150V MOSFET。同时,一系列200V MOSFET产品也已进入送样阶段。

关键字: MOSFET 功率器件 IGBT

协议旨在整合利用Microchip mSiC™技术与台达智能节能解决方案,加速可持续应用开发

关键字: 碳化硅 电源管理 MOSFET
关闭