当前位置:首页 > 模拟 > 模拟
[导读]今天,冷阴极荧光灯CCFL被用于各种应用,如笔记本电脑、显示器、电视等各种应用,它们的功能是给显示器提供背光,以及调节显示器的亮度。   CCFL 应用电路可以驱动匹配的荧光灯,在基于全桥转换器或ROYER拓扑的交

今天,冷阴极荧光灯CCFL被用于各种应用,如笔记本电脑、显示器、电视等各种应用,它们的功能是给显示器提供背光,以及调节显示器的亮度。
  CCFL 应用电路可以驱动匹配的荧光灯,在基于全桥转换器或ROYER拓扑的交流直流逆向转换器内能够见到这种应用。
  灯管的数量可以是1、2、4或6支,输出功率范围是2W到24W。交直流逆向转换器能够把输入的直流低电压转换成交流高压输出,以驱动荧光灯。CCFL的电源电压通常是12V直流电压,但是在全桥解决方案中,电压范围可以是8V~24V。
  以电压源配置的全桥解决方案基本上是由四个位于桥内的功率MOSFET晶体管组成,上桥臂晶体管是P沟道型晶体管,而位于下桥臂的MOSFET是N沟道型晶体管。一般情况下,同一个封装集成一对互补性功率MOSFET晶体管(位于同一列的N型和P型晶体管)。图1所示是一个含有这些元件的典型的应用电路示意图。
  从图1中不难看出,CCFL应用电路包括功率MOSFET晶体管桥(由U1和U2元件组成)、T1变压器(提高从一次侧到二次侧的输入交流电压)、输出电路(由一个6W灯管和一个串联电容C4组成)和反馈电路(由R4电阻和C1

 
8电容组成)。此外,图1还描述了CCFL驱动器和驱动器工作所需的电路。Vdd 和GND是驱动器的供给端,P1、P2、N1和N2是功率晶体管的栅极控制器。在突发模式部分,调光器(dimmer)是连接外部微调电容器的端子。通过产生恒定的基准电压,微调电容器可以调节荧光灯的亮度,同时,连接Cosc引脚的电容器产生一个低频固定的锯齿信号。输出突发模式端子连接FB引脚,连接软启动端子的电容器用于调整变压器二次侧绕组电压,以便使灯管软启动,同时,连接在点火时间端子的电容器用于确定灯管的导通时间。在据齿信号形电路部分,C32和R32分别是用于确定灯的频率和功率MOSFET晶体管开关频率的电容器和电阻器。在灯启动期间,R33电阻器开始动作,提高灯的频率和晶体管的开关频率,以升高灯管的端子之间的电压,直到灯管开始点火为止。 输入允许(input enable) 端子通过电阻R12和电容C21连接到小信号晶体管;Q4驱动 Q3的基极,这个系统作用于输入允许(input enable) 端子,使得这个应用可以启用或禁用。最后,过压保护端子通过C17、R11和D2连接到C5~C6电容隔离系统,这个系统可以监视二次绕组电压,如果电压高于基准值,这个系统就会将过压降低。简单框图见图2。
 

 

 


 

 

  全桥拓扑:相移控制器介绍
  图 3 首先帮助我们了解了一个典型的全桥拓扑的工作原理,然后是相移控制器模式的工作过程。
  在图3中,为了简便我们的研究,全桥内的功率MOSFET管都分别被视为开关S1、S2、S3和S4,开关S2和S3都位于上桥臂,S1和S4都位于下桥臂。位于同一列的开关(S1和S3,S2和S4) 不能同时接通,以防止短路情况发生;在相移控制操作模式下,位于同一列的开关可以同时开或关。针对荧光灯和变压器的等效电路,图3还描述了CCFL应用中的全桥逆变器的典型负载。在图3所示的情况中,S2和S1是通态,而S3和S4是断态,因此,电流经过相同的开关和负载;然后,S2和S1关断, S3和 S4 导通,电流改变方向,见图4

  针对全桥逆变器的典型工作模式,我们在图5中给出了相应的等效电路,其中,输入信号是一个方波信号(K是变压器的匝比,Lm是变压器一次侧固有电感,Rlamp是灯管通态时的电阻。)
  在一个全桥逆变器的典型工作模式下,电路中的电流只与输出负载有关,不能进行亮度控制操作。而且,传入灯管的功率达到最大值。
  为了在一个采用全桥拓扑的CFFL应用中进行灯的亮度控制,必须采用相移控制系统(见图5)。
  在一个全桥逆变器的典型工作模式下,只能进行第1阶段和第3阶段;然而在相移控制模式下,还能进行第2阶段和第4阶段。在第2阶段和第4阶段时,负载的端子短路,没有功率从网络流入灯管;在第4阶段时,电流连续流经负载和S1、S4开关,或者在第2阶段时,电流连续流经负载和S2、S3开关。第1阶段和第3阶段的时长相同,第2阶段和第4阶段的时长相同。这四个阶段的时长总合等于输入信号的时长,当第2阶段和第4阶段的时长增加时,第1阶段和第3阶段的时长也会增加,结果,灯管的功率和亮度也会增强。如果第1阶段和第3阶段的时长等于零,没有功率从网络流入灯管,灯管关断。针对相移控制系统,我们在图6中给出了相应的等效电路,其中,输入信号是一个特殊的方波信号。


 

 

 

  “ton-t step1” 是第1阶段的时长, “ton-t step3” 是第3阶段的时长, “toff-t step 2” 是第2阶段的时长, “toff-t step 4” 是第4阶段的时长; T 是信号的时长。在第1阶段和第3阶段时,网络给负载供电,这两个阶段的时间叫做ton。在第2和第4阶段,网络没有给负载供电,这两个阶段的时间叫做 toff.; d 是工作比,它用ton占T的百分比表示。提高第1阶段和第3阶段的时长,d的百分比也随着提高,反之亦然。

 

 

 

 

 

 

 

 

 

 


  只有参考图7和图8,才能理解这个系统为什么叫做相移控制。
  图7标出了一个全桥逆变器的典型工作模式,在这种情况下,只进行第1和第3阶段操作。当S1关断时,S2也关断,而S3和S4导通,因为它们的漏源极的电压为零;S1和S2的漏源极的电压为12V网络电压。针对通态S1和S2的时长,可以做出相同的考虑。
  为了实现相移控制系统,S1和S3的相位都是固定的,S2和S4的相位发生变化,如图8所示,在两个串联开关之间,相位转换是固定的,具体变化跟灯亮度有关。



  在间隔1时,进行第4阶段,因为S1和S4关断,S2和S3导通;在间隔2时,进行第3阶段,因为S1和S2关断,S3和S4导通;在间隔3时,进行第2阶段,因为S1和S4导通,S2和S3关断;最后,在间隔4时,进行第1阶段,因为S1和S2导 通,S3和S4关断;

 

 

   使用STS3C3F30L器件的CFFL应用实例
  本章将讨论一个使用全桥拓扑和STS3C3F30L器件的CFFL应用实例,实际应用的电路示意图与图4完全相同,灯是一个6W荧光灯,如图10所示。
  下图所示是STS3C3F30L器件内部的P沟道和N沟道晶体管的波形图。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电动汽车(EV)领域,牵引逆变器作为关键组件之一,扮演着至关重要的角色。它不仅影响电动汽车的驱动性能和效率,还直接关联到整车的安全性和耐用性。本文将详细介绍在选择电动汽车牵引逆变器时需要考量的多个方面,包括其保护机制与...

关键字: 逆变器 电动汽车 驱动

根据客户的定制化需求,纳祥科技推出一款多功能旋钮拓展坞方案,方案以USB Hub控制器为核心,集合了单片机、充电IC、旋钮交互与4颗快捷键,支持9个接口以及SD/TF双卡槽,确保了多设备兼容与稳定传输

关键字: 方案 方案开发 拓展坞 纳祥科技

7月3日消息,AMD显卡战未来,再添实锤证据!

关键字: 驱动 英伟达

在当今高速发展的电子系统领域,信号完整性已然成为确保系统性能与可靠性的关键要素。从驱动到连接器的信号传输路径宛如一条信息高速公路,而接收端则如同这条公路的终点收费站,其设置的合理性直接关乎信号能否准确无误地抵达目的地。若...

关键字: 信号 连接器 驱动

在复杂的嵌入式系统或高性能计算环境中,以太网驱动的稳定性与可靠性至关重要。然而,有时开发者会遇到一些难以解释的现象,比如拔掉一个网口后,另一个原本工作正常的网口突然无法接收数据。这种看似不合逻辑的问题,往往隐藏着深层次的...

关键字: 以太网 驱动

在嵌入式开发过程中,许多系统通常使用串口驱动来满足通信要求,但在实际应用中,使用SPI通信方式会更加高效和快捷。

关键字: 串口 驱动

电池驱动系统的设计方面,DC-DC变换器的选择至关重要。最合适的DC-DC变换器才能满足电池分布式并网发电系统的需求。

关键字: 电压 全桥 DC-DC变换器

变频调速电机简称变频电机,是变频器驱动的电动机的统称,优点是具备有启动功能;采用电磁设计,减少了定子和转子的阻值;适应不同工况条件下的频繁变速;在一定程度上节能。

关键字: 变频 调速电机 驱动

发光二极管驱动芯片按类型可分为:恒压式驱动芯片、恒流式驱动芯片以及脉冲式驱动芯片。其中恒压式驱动芯片一般就是我们常见的DC/DC升压芯片居多。

关键字: 二极管 驱动 芯片

目前国内外DC-DC变换电路中最常用的电路拓扑形式之一是全桥变换电路拓扑,在大中功率应用场合更是首选拓扑。

关键字: DC-DC 变换电路 全桥
关闭