当前位置:首页 > 智能硬件 > 半导体
[导读]本文介绍了一款使用TI 控制芯片UCC28720 设计的5W 无Y 电容充电器方案,并且介绍了一种变压器结构设计,在去除了Y 电容的情况下依然能够通过EMI 测试;同时,整机待机功耗在全电压范围内低于10mW。由于UCC2820 是专为驱

本文介绍了一款使用TI 控制芯片UCC28720 设计的5W 无Y 电容充电器方案,并且介绍了一种变压器结构设计,在去除了Y 电容的情况下依然能够通过EMI 测试;同时,整机待机功耗在全电压范围内低于10mW。由于UCC2820 是专为驱动三极管设计的原边调整控制器,使得整机的成本更有优势。

1 电源方案介绍

随着智能手机以及平板电脑的普及。手机充电器的要求也越来越高。其挑战主要来源于两个方面。第一,低待机功耗。由于充电器通常都插在插座上,而且大多数时间都不在执行充电工作。但是,它们仍然会消耗电能,因而浪费了能源和用户的金钱。如何降低这些装置的待机功耗,从而节省电能、满足政府法规要求,以及为用户节省金钱,已显然是设计工程师必须面对的问题。IEC 五星级能耗要求空载时设备消耗的功率必须小于30mW。 第二,EMI 性能。由于充电器的体积非常小,成本控制严格,所以滤波器的使用受到限制, 另一方面,原副边漏电流的限制也使得越来越多的厂商采用了无Y 电容方案。这给EMI 的设计提出了极大的挑战。

本方案采用了UCC28720 控制的5V@1A 反激变换器,介绍了一种特殊的变压器结构,成功去除了Y 电容了。同时由于UCC28720 是一款原边反馈变换器,从而消除了光藕及副边反馈线路,节约了成本并提高了可靠性。 UCC28720 集成了高压启动,调频调幅两种模式,使得整个变换器的待机功耗可以在全电压范围内小于10mW,已经远远优于五星级标准。

下图是原理图。

图1. 5W无Y电容充电器原理图

1.1待机功耗估算

电压调整控制模式下,控制器工作在调频(FM)和调幅(AM)模式,如图2 所示. 从图中可知,待机情况下,UCC28720 支持最低开关频率为680Hz;同时原边峰值电流为满载峰值电流的1/4。所以,待机功耗可作如下估算:

由上式可得,待机功耗的大小跟变压器电感量大小,变换器具体的峰值电流无关,只与设计的最高工作频率与芯片最低工作频率比以及最大设计峰值电流和最小峰值电流比有关。根据芯片规格书得:

本次设计中,输出功率为5W,最大开关频率设计为70KHz. 所以,可以计算得,理论待机功耗为:

由于输出需要加一定的假负载来保证控制输出电压稳定,假负载一般在2mW 左右,那么整机空载功耗可以在全电压范围内做到10mW 以下。

图2. UCC28720 FM 和AM 模式图

1.2变压器结构设计

变压器的电感量计算可以参考UCC28720 的规格书;这个不作详细介绍。详细的变压器计算可以参考SLUA604。这里只介绍本方案中的被证明的一种对EMC 有效的变压器结构。合适的变压器结构设计对适配器的效率和EMI 性能有很大的影响. 本文提供了一种经测试验证的变压器设计结构, 从而帮助去除了Y 电容,并且得到理想的EMI 结果。参见图3, 通过计算,使变压器原边恰好绕满骨架两层,然后加入一层屏蔽绕组,绕组一端接地,另一端埋在变压器内部。屏蔽绕组将原副边隔离,可以有效的降低共模干扰。屏蔽绕组的外面是副边绕组,最外层是辅助绕组,通过选择适当的线,使得辅助绕组刚好绕满一层。最后,变压器外加铜带做屏蔽,铜带需与磁芯可靠接触,然后通过导线接地,达到磁芯接地的目的。 使用此种结构的变压器,在本设计中,可以通过EMI 测试,并且有可靠的余量。

图3. 变压器结构图

当然,EMI 特性跟很多因素有关,本设计中有效的变压器结构不一定适用于其它的设计,但无论如何,都可以给后面的设计作一个参考和思路。

2 测试结果

根据以上分析和设计,制作了样机并验证其性能,实验结果如下。

2.1 效率测试

表1. 115Vac 变换器效率

表2. 230Vac 变换器效率

图中可以看出,变换器在全电压范围内,待机功耗低于10mW。

2.3 输出V-I 曲线

图5. 115V&230V V-I 曲线

由图5 所示,本方案在115Vac 输入和230Vac 输入情况下,输出电压和输出电流均在客户要求的范围之内,并且可以看到,不同输入电压时,输出电流的一致性非常好。[!--empirenews.page--]

2.4 EMC 测试

图6. 传导测试结果

3 结论

本文分析设计了使用UCC28720 控制的原边反馈反激变换器。 找到了一种合理的变压器结构,通过了EMI 测试,完成了无Y 电容的充电器设计。给未来的无Y 电容充电器的设计提供了一种参考和思路。同时,结合UCC28720 的特点,使该方案在整个输入电压范围内的待机功耗低于10mW。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

该SiP系列现已增至三款器件,均使用了Transphorm的SuperGaN,为支持新一代适配器和充电器拓展了功率等级

关键字: 氮化镓 适配器 充电器

复位电路是一种用来使电路恢复到起始状态的电路设备,它的操作原理与计算器有着异曲同工之妙,只是启动原理和手段有所不同。复位电路,就是利用它把电路恢复到起始状态

关键字: 复位电路 电容 电源

电动机作为现代工业与生活的重要动力源,广泛应用于各个领域。然而,在电动机的运行过程中,电容烧毁的问题时常发生,给生产和生活带来诸多不便。那么,电动机为何偏爱“烧电容”呢?本文将从电容的作用、烧毁原因以及预防措施等方面进行...

关键字: 电动机 电容

现在市面上的普通充电器,输出电流一般都是固定的,它们通常是按照手机的续航时间和电池容量进行匹配,而不是考虑充电器的性能。

关键字: 可调电流 充电器 电池容量

在这篇文章中,小编将为大家带来电容的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 电容 去耦 滤波

在这篇文章中,小编将为大家带来Type-C充电器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: Type-C 充电器

开关电源适配器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 适配器 电源 开关电源 充电器

在电子设备日益普及的今天,电源适配器和充电器成为了我们日常生活中不可或缺的一部分。它们的主要功能都是为电子设备提供电源,但在实际使用中,开关电源适配器和充电器之间却存在着一些明显的区别。本文将从定义、工作原理、使用场景、...

关键字: 电子设备 电源适配器 充电器

电容,作为电子学中的一个基本概念和关键元件,广泛应用于各种电路和设备中。它的主要功能是储存电荷并在电路中起到滤波、耦合、调谐等作用。那么,电容的工作原理是什么呢?本文将从电容的基本结构、电荷储存机制、电场作用以及实际应用...

关键字: 电容 滤波 电子学

在复位电路中,电容的作用是给系统提供恒定的电源电压,从而保证开机时系统能够正确地执行初始化和自检过程。因此,选择合适大小的电容对于系统的稳定性和性能至关重要。

关键字: 复位电路 电容 系统
关闭
关闭