当前位置:首页 > 电源 > 功率器件
[导读]摘 要 : 介 绍 了LLC谐 振 变 换 器 和 不 对 称 半 桥 变 换 器 两 种 不 同 类 型 的 软 开 关 拓 扑 。 分 析 了 它 们 的 工 作 原 理 , 分 别 对 它 们 的 控 制 方 法 , 副 边 整 流 管 的 电 压 应 力 和

摘 要 : 介 绍 了LLC谐 振 变 换 器 和 不 对 称 半 桥 变 换 器 两 种 不 同 类 型 的 软 开 关 拓 扑 。 分 析 了 它 们 的 工 作 原 理 , 分 别 对 它 们 的 控 制 方 法 , 副 边 整 流 管 的 电 压 应 力 和 副 边 的 开 通 等 进 行 了 比 较 , 分 析 结 果 表 明 ,LLC谐 振 变 换 器 更 适 合 高 频 化 和 高 效 率 的 要 求 。

关 键 词 :LLC谐 振 变 换 器 ; 不 对 称 半 桥 变 换 器 ; 电 压 应 力

0    引言

    随着开关电源的发展,软开关技术得到了广泛的发展和应用,已研究出了不少高效率的电路拓扑,主要为谐振型的软开关拓扑和PWM型的软开关拓扑。近几年来,随着半导体器件制造技术的发展,开关管的导通电阻,寄生电容和反向恢复时间越来越小了,这为谐振变换器的发展提供了又一次机遇。对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。

1    两种变换器的工作原理

1.1    不对称半桥变换器

    图1和图2分别给出了传统的不对称半桥变换器的电路图和工作波形。图1中包括两个互补控制的功率MOSFET(S1和S2),其中S1的占空比为D,S2的占空比为(1-D);隔直电容Cb,其上电压作为S2开通时的电源;中心抽头变压器Tr,其原边匝数为Np,副边匝数分别为Ns1Ns2;半桥全波整流二级管D1和D2;输出滤波电感Ld,电容Cf

图1    不对称半桥变换器

图2    不对称半桥变换器的工作原理

    不对称半桥(AHB)变换器的稳态工作原理如下。

    1)当S1导通S2关断时,变压器原边承受正向电压,副边Ns1工作;二极管D1导通,二极管D2截止;

    2)当S2导通S1关断时,隔直电容Cb上的电压加在变压器的原边,副边Ns2工作,二极管D1截止。

    图2中n1=Np/Ns1n2=Np/Ns2,且n1=n2=n。通过对电路的分析,可以得到传统不对称半桥变换器占空比D的计算公式

    D=(1)

1.2    LLC谐振变换器

    图3和图4分别给出了LLC谐振变换器的电路图和工作波形。图3中包括两个功率MOSFET(S1和S2),其占空比都为0.5;谐振电容Cs,副边匝数相等的中心抽头变压器Tr,Tr的漏感Ls,激磁电感LmLm在某个时间段也是一个谐振电感,因此,在LLC谐振变换器中的谐振元件主要由以上3个谐振元件构成,即谐振电容Cs,电感Ls和激磁电感Lm;半桥全波整流二极管D1和D2,输出电容Cf

图 3    LLC谐 振 变 换 器  [!--empirenews.page--]

图 4    LLC谐 振 变 换 器 的 工 作 原 理

    LLC变换器的稳态工作原理如下。

    1)〔t1t2〕当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体二级管导通。此阶段D1导通,Lm上的电压被输出电压钳位,因此,只有LsCs参与谐振。

    2)〔t2t3〕当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。此时CsLs参与谐振,而Lm不参与谐振。

    3)〔t3t4〕当t=t3时,S1仍然导通,而D1与D2处于关断状态,Tr副边与电路脱开,此时LmLsCs一起参与谐振。实际电路中Lm>>Ls,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。

    4)〔t4t5〕当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体二级管导通。此阶段D2导通,Lm上的电压被输出电压钳位,因此,只有LsCs参与谐振。

    5)〔t5t6〕当t=t5时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和D1截止。此时仅CsLs参与谐振,Lm上的电压被输出电压箝位,而不参与谐振。

    6)〔t6t7〕当t=t6时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,此时LmLsCs一起参与谐振。实际电路中Lm>>Ls,因此 , 在 这 个 阶 段 可 以 认 为 激 磁 电 流 和 谐 振 电 流 都 保 持 不 变 。

    通过上面的详细分析,对这两类软开关型变换器的工作原理及其特性有了一定的了解,下面将对它们之间的差异进行比较,进一步加深对它们的认识。

2    两种变换器差异的对比

    虽然不对称半桥变换器和LLC谐振变换器都是软开关型变换器,但是,两者有本质的区别。不对称半桥变换器是PWM型的,而LLC谐振变换器是谐振型的,因此,它们在控制方法、副边整流管的电压应力、原边的电流应力等方面有很大的差异,下面将对这些差异进行详细分析。

2.1    控制方法的对比

    不对称半桥变换器通过调节开关管的占空比来调节输出电压,图5给出了在不同的输入电压下的占空比变化情况,从图5可以看出当输入电压变化范围比较大时,开关管的占空比变化范围也比较大,因此,不对称半桥变换器的掉电维持时间特性比较差。

图 5    不 对 称 半 桥 占 空 比 变 化 图 [!--empirenews.page--]

    与不对称半桥变换器相比,LLC谐振变换器是通过调节开关频率来调节输出电压的,也就是在不同的输入电压下它的占空比保持不变,因此,与不对称半桥相比,它的掉电维持时间特性比较好,可以广泛地应用在对掉电维持时间要求比较高的场合。

2.2    副边整流管电压应力的对比

    通过对不对称半桥变换器工作原理的分析,可以得到副边二极管上的电压应力的计算方法如式(2)及式(3)所示,这样当输入电压变化时,就可以了解副边二极管电压的变化情况。图6给出了输出电压为48V时副边整流管上电压变化情况。当输入电压比较高时,D2上的电压比较高,因此,D2必须选用耐压等级比较高的二极管,这样就会增加电路的损耗。

    VD1=(2)

    VD2=(3)

图6    不 对 称 半 桥 中 副 边 二 级 管 电 压 应 力 图

    相同条件下,LLC谐振变换器中副边二极管上的电压应力比不对称半桥变换器小很多,因为,在LLC谐振变换器中副边二极管上的电压应力是输出电压的2倍,如图7所示。因此,在LLC谐振变换器中可以选择耐压比较低的二极管,从而可以提高电路的效率。

图 7    LLC变 换 器 中 副 边 二 级 管 电 压 应 力 图

2.3    副边二极管的开通对比

    从对不对称半桥变换器的分析可知其副边二极管是硬开通,损耗比较大;而从对LLC谐振变换器的分析可知其副边二极管是零电流开关,损耗比较小,这样就可以提高变换器的效率。

2.4    其他方面

    首先,在不对称半桥变换器中上下开关管的占空比是互补的,因此,不对称半桥变换器中的变压器有直流偏置现象;而在LLC谐振变换器中上下开关管的占空比是相等的,因此,LLC谐振变换器中的变压器没有直流偏置现象。

    其次,LLC谐振变换器是通过调开关管的工作频率来调节输出电压,因此,对于LLC谐振变换器来说,要实现同步整流控制比较复杂;而不对称半桥变换器是通过调开关管的占空比来调节输出电压,因此,对于不对称半桥变换器来说,要实现同步整流控制比较简单。

    另外,通过对LLC谐振变换器的分析,可知其电流应力比较高;而在不对称半桥变换器中电流应力比较低。

3    结语

    通过对不对称半桥变换器LLC谐振变换器的分析和研究,对它们的控制方法,副边整流管电压应力和副边开通等进行的对比,可以知道LLC谐振变换器更能适合电源对高频和高效率的发展需求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭