当前位置:首页 > 电源 > 功率器件
[导读] 手工具机、喷墨式印表机及硬碟机等马达性负载启动瞬间需要较高的启动电流,因此, 此类产品的电源供应器在启动瞬间要能提供较高的功率(Peak power)输出,但平时工作状态时所需的功率却又远低于启动瞬间所需功率

   手工具机、喷墨式印表机及硬碟机等马达性负载启动瞬间需要较高的启动电流,因此, 此类产品的电源供应器在启动瞬间要能提供较高的功率(Peak power)输出,但平时工作状态时所需的功率却又远低于启动瞬间所需功率。面对如此大范围变化的功率需求,若以启动瞬间的条件来设计变压器,会造成平时工作状态的过度设计(Overdesign)而增加设计成本,因此,应用需求与设计成本之间的取舍往往造成设计上的困难。为了对这些需求进行最佳化设计,以下我们将针对需求特性及原理进行分析。

  根据法拉第定律,返驰式转换器(Flyback cONverter)的能量转换公式如式(1)所示,由以下公式中我们可以看出,一次侧的峰值电流变化量受到输入电压(VI)、电感感量(L)、导通时间(DON)以其操作频率(FSW)等参数影响。以前述例子而言,启动瞬间需要较大的启动电流(IP),因此开关导通时间会随着负载不断增加,使得峰值电流变化(DIP)也随之上升,此时,磁通量密度可能会因为过大的峰值电流变化而超过其承载上限值(BMAX),造成变压器饱和产生短路线现象,导致一次侧峰值电流急速增加而毁损周边原件,如图1所示。

 


  一次侧峰值电流变化量

  VI 输入电压

  DON 开关导通时间

  L 一次侧电感感量

  FSW 关关切换频率



图1、变压器饱和现象

  由公式(1)中可得知,峰值电流变化和开关切换频率呈反比关系,如公式(2)所示。若将开关切换频率随负载增加而提升(图2),能够有效抑制峰值电流的变化量,不仅可提供瞬间高瓦特数输出,提升瞬间的启动能力,更能降低变压器在启动瞬间的磁通,缩小元件尺寸并降低成本。


 


 

图2. 依据负载调整开关切换频率[!--empirenews.page--]

  目前市面上PWM IC并无专门针对此应用的解决方案,若要满足上述需求皆需要增加周边应用电路。因此,以下特别使用一款符合这样需求的产品--LD7533来做说明。

  LD7533为一电流模式控制IC,整合了过电压保护(OVP)、过温保护(OTP)及过载保护(OLP)等保护功能,同时也具备了可调式软启动(Soft STart)、电压过低锁定(UVLO)、内建输出PWM频率跳动及前缘突波遮蔽(LEB)等功能。另外,LD7533拥有低启动电流(<18μA)及轻载运作时极低的操作电流(<1mA),如此较传统电流模式控制设计能达到更精简及节能要求。

  以18W(12V/1.5A)应用为例,当Peak power需求达到36W(12V/3A)时,LD7533将原有PWM频率由62KHz提升至180KHz,避免变压器产生饱和现象,不仅可以满足瞬间较高瓦特数需求,更能有效降低最大磁通量密度(BMAX)达21%,如下图3所示。


 


图3、LD7533与一般PWM IC比较

  这一款LD7533另外提供了软启动时间及过载保护延迟时间调整的功能,可满足各种不同产品的应用需求。

  如图4所示,透过调整CT 脚位上的电容,可调整下列参数:

   软启动时间(Soft-Start time):有效降低MOSFET上尖波电压(Spike)大小。

   过载保护延迟时间(OLP delay time):以满足各种不同的Peak power时间需求,同时兼顾系统应用的安全性。

 



 

图4、软启动时间及过载保护延迟时间调整[!--empirenews.page--]

  应用实例

  若使用传统PWM IC来实现上述功能,往往需要增加许多周边电路,不仅增加设计时间与材料成本,电路可靠度也是一大问题。如图5所示,LD7533成功了整合应用所需电路,提供了极精简化设计的解决方案,让工程人员能更快速的完成产品设计。


 


图5、LD7533高功率输出解决方案与传统应用差异比较

  结论

  利用LD7533瞬间高功率输出解决方案,实验结果达成瞬间高功率输出并降低变压器设计成本,在应用需求与设计成本之间取得最好的平衡点。另外,若调整它的的软启动时间及过载保护延迟时间,即可满足各种不同产品的应用需求。

  低启动电流(<18μA)及轻载运作时只消耗了非常低的操作电流(<1mA), 这款产品和传统电流模式控制相较, 设计更精简、节能,符合Energy Star等各国相关节能规范要求。

  由LD7533提供的高可靠度周边应用线路整合解决方案来看,精简化的电路能有效减少工程人员的设计时间及降低材料等设计成本,大幅缩短专案开发所需时程。

 

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭