当前位置:首页 > 电源 > 功率器件
[导读]1 引言开关电源是近几年电源市场的焦点之一,它最大的优点是大幅度缩小变压器的体积和重量,这样就缩小了整个系统的体积和重量。一般说来,开关电源的重量是线性电源的1/4,相应

1 引言

开关电源是近几年电源市场的焦点之一,它最大的优点是大幅度缩小变压器的体积和重量,这样就缩小了整个系统的体积和重量。一般说来,开关电源的重量是线性电源的1/4,相应的体积大概是线性电源的1/3。所以开关电源对低档的线性电源,尤其是20W以下的线性电源构成了威胁,大有取而代之之势。但是传统的开关电源除了PWM 和功率MOSFET之外还包括50个左右的分立元件,这不但增加了成本、体积,而且还使可靠性受到了影响。这主要是生产工艺上的原因,开关电源在集成化上一直没有突破。

近几年,随着生产工艺技术的成熟,已经能将低压控制单元和高压大功率管集成到同一块芯片之中。TI、ON Semiconductor、Power、 Integrations等公司都已经有类似的产品,而国内则几乎是一片空白。由于开关电源在体积、重量、效率以及可靠性上的优势,它的研究和发展速度是惊人的。其主要应用领域有:①邮电通信:作程控交换机、移动通信基站电源;②计算机:作为各种PC机、服务器、工业控制机的开关电源;③家用电子产品:目前使用开关电源的家用电子产品有电视机、影碟机等;④其他行业:如电力、航天、军事等领域。

根据工艺的发展和市场的需要,将核心部分功率MOSFET和低压PWM控制器集成在一块芯片中。同时,还具有过热保护、过压保护、欠压锁定、自动重启动、过流保护等功能。这种新型的开关电源集成电路给电源系统带来了很多优势。该芯片交流输入可直接从电网接入,应用功耗低,成本低,体积小,同时还提高了系统的稳定性,降低了成本,使电子工程师的设计更加简单。该芯片可用于驱动一个单端接地电源系统,如接一个振荡回扫的二次线圈变压器后输出一直流电压。

2 工作原理

此开关电源为一中频集成模块,设计频率为 100kHz,最大占空比为70%,它包括一个恒频脉宽调制器和一个高集成度电源开关电路,其结构如图1所示。这个组合开关的高压侧可对从85~265V的交流电压进行连续控制,可以应用于多数常规电源系统。

 

 

通过一个光电耦合管,将负载变化情况反馈到芯片内部,反馈信号在2.7k的电阻上产生电压降,经过7kHz的低通滤波器,把高频开关噪音滤掉,以直流电压形式输入到PWM模块进行调节,产生占空比随反馈信号变化的脉冲波,通过驱动电路驱动功率MOSFET,从而实现了PWM的调节。除此之外,功率MOSFET的源极接一电阻,来实现每周期的限流保护。

正常情况下,1/8分频器输出信号使得功率 MOSFET导通,若故障发生,它的输出信号使得功率MOSFET关断,并且它自身开始计数,第1 个周期,功率MOSFET导通。若没有排除,以此规律循环下去;若故障排除,则进入正常工作状态。该IC外接变压器,实现AC-DC功能后,不同规格的变压器可获得不同的直流电压。

3 内部功能模块介绍

3.1 振荡器电路

如图2所示,该振荡器利用两个比较器轮流导通,对电容进行充放电,获得了在电压在2.7~4.1V震荡的锯齿波。其设计频率为100kHz,占空比为 70%。对电容充放电时,利用MOS管饱和区工作电流恒定的原理,实现恒流充放电。其等效简化电路模型如图3所示。充电时,开关S合到3端,可得

DQ=DU×C (1)

且DU=4.1-2.7=1.4v (3)

式中,C = 40pF, IP=18.6mA,可以计算出T P=3ms。 放电时,开关S打到8端,可得

&

nbsp; 式中,IN=8mA,可以计算出 TN =7ms。

T=Tp+T N=10ms (5)

占空比的设计也是需要考虑的,当占空比提高后,整个IC及外接电路构成的电源效率都会提高。

 

 

但是又不能无限的提高,使之接近100%,这主要是变压器磁通的建立和恢复是有时间限制的。同时,长时间的导通,功率MOSFET容易烧坏。

3.2 偏置电路

该电路采用三管能隙基准电源,如图4所示。 T2的发射极电压如式(6)所示。由公式可知,利用等效热电压 Vt的正温度系数和Vbe 的负温度系数相互补偿,可使输出基准电压的温度系数接近为零 (由于T6和T2的Vbe相同,所以输出电压 Vref和T2发射极电压相同)。

 

 

3.3 PWM调制电路

由光耦管耦合过来的反应负载变化情况的信号首先经过一个7kHz的低通滤波器,然后送到PWM比较器和振荡器产生的锯齿波进行比较,从而实现脉宽调制。该低通滤波器的频率响应为

 

 

可作为设计参数使用。

3.4 过压保护,欠压锁定电路

设计的内部电路工作电压环境为7.5~8.6V,该电路如图5所示,由比较器C1,C2和电阻R1 、R2、R3、R 4组成。由于迟滞比较器的作用,当Vcc 处于7.5~8.6V时,IC正常运行。当Vcc >8.6V时,C1输出高电平,直接使放电NMOS管导通,进行放电。该NMOS管设计得比较大,这样可以迅速地放电,使IC及时地回到安全状态。若该 Vcc故障仍然存在,将用八分频计数器来计数。这个八分频计数器使得功率MOSFET关闭,电容将在8个连续周期内反复充放电,8个周期后,若故障排除,整个IC进入正常工作状态,功率MOSFET开通。这种设计可大大减少功率MOSFET的耗散功率。当内部工作电压Vcc<7.5V时,C1输出一低电平,关闭驱动,同时驱动高压启动电路,对外接10μF电容进行充电。同时,该低电平也送入计数器计数,这样便实现了自启动功能。一般说来Vcc <7.5V,是由负载短路或过载引起电源变压器的附加线圈输出电压失落,没有足够的电压对芯片供电所致。

 

[!--empirenews.page--]

 

3.5 热关断电路

热关断电路如图6所示。正常情况下T =25℃,Vz=6.3V,V BE1=0.75V,VBEH=0.65V,此时 VH = R3 ( Vz -VBE1) / (R2+R3)=0.43V< VBEH

 

 

故Q1不导通,从而Vout 为高电平。

故障状态,稳压管的温度系数为正,而晶体管的VBE 为负温度系数。设计的温度保护能力(当T=150℃)为

同样计算可得VH(150℃)=0.46V,这样Q 2 导通,Vout为低电平。此信号直接关断功率MOSFET。同时这个脉冲信号也输入到1/8分频器,做计数用。

3.6 高压启动电路

高压启动电路如图7所示,当IC上电后,整个IC处于建立工作环境的状态。VDMOS的栅极为高电平,则该管导通,Out端有充电电流。当 Vcc达到8.6V时,过压保护电路送来信号 Vstart为一低电平,使得P2导通,这样VDMOS截止。另外 R1的作用是充电电流过大时,使P1、Q1导通,使

VDMOS截止,起到保护作用。此充电电流能力设计值为3mA,超过该值,VDMOS就会截至。根据计算,整个IC建立工作环境所需的时间为40ms,与实际仿真结果相符。

 

 

3.7 驱动电路

设计驱动电路的目的是为了去除驱动信号的毛刺和对功率MOSFET的栅极起保护作用(图8)。正常时,N1、N2、N3都处于截止状态。当电路内部电源电压Vcc由低电平突然变为高电平时,电容C两端电压不能突变,这样N1导通,使输出为0。另外当IC突然上电时,由于功率MOSFET的栅漏电容的存在,使栅极的电压为高电平,但是由于设计中加了电阻 R和N3的存在,对栅极构成旁路,起到保护作用。最后就是如果IC突然断电时,则功率管漏极没有大电流供给。如果此时驱动为高电平,则可以从 R上卸流,最终使低电平变低。总之,N1、N2、N3对功率MOSFET 的栅极起保护作用。

 

 

3.8 前沿消隐电路

前沿消隐电路如图9所示。正常时,A点电压较低,2管导通,则C2输出为高电平;故障时,也就是功率MOSFET的电流过大时,A点电位升高,使得2管关闭,这样C2输出为低电平,出现故障脉冲。值得一提的是,2管的栅极输入信号和它的源极输入信号不是同步的,这样设计的好处是可以避免短暂时间内电流过大的情况。若电流一直很大,则可以发挥前沿消隐作用。这两个信号的延时大小由几级反相器和电容构成,其中以电容的贡献最大,其设计延时时间为200ns。

 

4 仿真结果

仿真过程中,着重对正常运行、过压、欠压、过流、过载等情况做了分析。图10中模拟了负载变化时功率MOSFET输出的变化情况。最下面一条波形为负载情况经过光耦合和低通滤波器后的电压,中间一条波形为IC内部电压 Vcc信号,最上面一条波形为功率MOSFET栅极上的驱动电压信号。可以看出,由于充电,Vcc不断增加达到8.6V时便不再增加(过压保护电路起作用),IC开始工作。当负载逐渐变小时,引起反馈电压升高,使得反馈到IC的信号增大,其功率MOSFET栅极的驱动电压的占空比减少,最终为0。

 

 

图11中模拟了IC内部电压发生异常时的情况。最下面一条波形为功率MOSFET的栅极驱动电压,中间一条波形为自动重启动电路的工作信号(Vstart),最上面一条波形为IC内部电压 Vcc信号。可以看出,当Vcc 上升到8.5V时,自动重启动电路关闭,同时计数器开始计数,这时功率MOSFET 还处于工作状态。当Vcc 降低到7.5V时,自动重启动电路开始工作,对外接10μF电容进行充电。这样反复进行8次,在第九个周期时,功率MOSFET再次工作,符合最初的设计要求。

 

 

5 结论

本文设计了一种适用于便携式设备的功率开关电源的IC,通过对其功能及特性的分析,设计了各个子模块的电路,并对其进行了模拟仿真。结果表明,负荷调节灵敏、精确,各种保护电路动作及时可靠。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2024年4月17日 /美通社/ -- 在2024 F1中国站即将拉开帷幕之际,高端全合成润滑油品牌美孚1号今日举办了品牌50周年庆祝活动。三届F1年度车手总冠军马克斯•维斯塔潘也亲临现场,共同庆祝这一里程...

关键字: BSP 汽车制造 行业标准 产品系列

北京2024年4月17日 /美通社/ -- 2024年4月13日,由北京康盟慈善基金会主办的"县域诊疗,规范同行"——肿瘤诊疗学术巡讲项目首站在广州隆重召开。本次会议邀请全国多位肺癌领域专家和县域同道...

关键字: AI技术 医疗服务 BSP 互联网

海口2024年4月16日 /美通社/ -- 4月14日,在中法建交60周年之际,科学护肤先锋品牌Galenic法国科兰黎受邀入驻第四届中国国际消费品博览会(以下简称"消博会")法国馆。Galenic法...

关键字: NI IC BSP ACTIVE

上海2024年4月17日 /美通社/ -- 每年4月17日是世界血友病日。今年,世界血友病日以"认识出血性疾病,积极预防和治疗"为主题,呼吁关注所有出血性疾病,提升科学认知,提高规范化诊疗水平,让每一位出血性疾病患者享有...

关键字: VII 动力学 软件 BSP

伦敦2024年4月16日 /美通社/ -- ATFX宣布任命Siju Daniel为首席商务官。Siju在金融服务行业拥有丰富的经验和专业知识,曾在全球各地的高管职位上工作了19年以上。Siju之前担任FXCM首席商务官...

关键字: NI AN SI BSP

2024国际集成电路展览会暨研讨会(IIC Shanghai)期间,以“芯·未来”为主题的2024中国IC领袖峰会暨中国IC设计成就奖颁奖典礼于3月29日在上海张江召开,安谋科技(中国)有限公司(以下简称“安谋科技”)再...

关键字: IC设计 集成电路 AI

3月29日,由知名媒体ASPENCORE主办的“中国IC设计成就奖”(2024 CHINA IC DESIGN AWARDS)颁奖典礼在上海举办。江苏谷泰微电子有限公司凭借在模拟芯片及信号链芯片领域的出色表现,荣获202...

关键字: IC设计 信号链芯片 模拟芯片

Dec. 20, 2023 ---- TrendForce集邦咨询表示,受惠于智能手机、笔记本电脑供应链库存落底并且进入季节性备货旺季,加上生成式AI相关主芯片与零部件出货加速,第三季全球前十大IC设计公司营收环比增长1...

关键字: IC设计 AI 大型语言模型

近日,第29届中国集成电路设计业2023年会暨广州集成电路产业创新发展高峰论坛(ICCAD)在广州举行。来自国内外IC设计企业及IP服务厂商、EDA厂商、Foundry厂商、封装测试厂商、系统厂商、风险投资公司、集成电路...

关键字: 半导体 IC设计 集成电路
关闭
关闭