当前位置:首页 > 电源 > 功率器件
[导读]许多通信场景中调制信号不能完全满足过零特性,常用检测方法都不能直接应用,为了解决这个问题,采用了一种结合使能控制的采样钟同步方法。通过使能信号控制环路中的Gardner定时误差检测模块,达到环路收敛的目的。该方法既利用了通常的Gardner算法结构,具有低复杂度特性,又保证了环路可以可靠工作。在实验过程中给出了具体的工程实现流程,并通过仿真验证了该方法的有效性。

0 引言

出于实现成本和复杂度考虑,数字通信接收机通常采用固定频率晶振实现信号采样。由于工艺原因,实际频率和额定频率之间会存在不可避免的频率误差,从而使得基于数字电路实现的采样钟恢复环路是多数系统中的必不可少的模块之一。

目前,针对不同场景,学者们已经提出了多种采样钟恢复算法[1?3],它们的基本架构类似,主要区别在于定时误差检测采用的算法不同,而且对输入信号的特性要求也不同。纵观这些定时误差检测算法,最常用的包括Gardner检测算法[4?5]和相关检测算法[2].其中,前者要求输入检测器的数据率为符号率的两倍,而且数据中的过零点要足够多,目前,这种方法已经成功应用到欧洲DVB?C、美国ATSC?T等多种系统接收机实现中。另外,由于卫星通信中多采用低阶QPSK等调制方式,满足其对过零特性的要求,Gardner算法在卫星通信领域也有很大的应用前景,如DVB?S/DVB?S2等系统接收机。相关检测算法适合发送信号中包含一段已知的训练信号,且该段数据的自相关特性较优,算法需要输入的数据率是符号率的四倍,相关检测算法也有很广泛的应用,也涌现了许多改进算法以及在基本构架基础上的并行实现方法[6?11].

但是,实际的通信体制中,存在许多场景,仅部分信号满足过零特性,如仅有一段数据采用过零特性较好的调制方式,其他数据采用OFDM 调制或者其他调制方式。此时,上文提到的两种检测方法都不能直接应用。

出于这种考虑,本文给出了一种结合使能控制的采样钟同步实现方法,该方法既利用了通常的Gardner算法结构,具有低复杂度特性,又保证了环路可以可靠工作。

1 典型的基于Gardner 算法的采样钟同步环路

如图1 所示,基于Gardner 算法的采样钟同步环路包括四个主要部分:内插滤波器、Gardner定时误差检测器、低通滤波器和数控振荡器。内插滤波器根据输入的数据序列和小数因子内插得到新的数据符号,可以采用三角内插、分段抛物内插等实现,其内插性能决定了环路的恢复精度;低通滤波器实现对估计误差的滤波,其带宽决定了环路是否收敛、收敛速度以及收敛精度;数控振荡器根据滤波器输出计算符号率使能信号和两倍的符号率使能信号,其中前者控制滤波器,后者控制Gardner 定时误差检测器。Gardner 定时误差检测器用三个连续的采样点来求得定时误差,即:

 

式中:r(1/ 2 - τ) ,r(-τ) ,r(1 - τ) 分别表示中间时刻、前一时刻以及后一时刻对应的采样点,三个采样点的示意如图2所示:

 

 

 

 

2 结合使能控制的采样钟同步实现方法

接收机首先通过相关等得到粗同步信号,用于指示满足过零点特性的数据段,其次采样钟恢复环路通过输入的粗同步信号控制整个环路工作,如图3所示。

环路工作流程如下:

(1)采样数据送入内插滤波器后,根据小数因子计算内插后符号;

(2)内插符号作为定时误差检测器的输入,如果粗同步使能信号为高,内插后的符号数据用于计算定时误差,两倍符号使能信号为高时检测器工作;

否则,定时误差设置为零;

(3)定时误差结果送入低通滤波器,符号使能为高时滤波器工作;

(4)低通滤波器输出给数控振荡器;

(5)数控振荡器生成符号使能信号控制低通滤波器,生成两倍符号使能信号控制定时误差检测器,从而形成一个闭环。

 

 

3 计算机仿真分析

图4和图5分别给出了仅有10%可同步信号时的小数因子μ变化曲线以及恢复的数据眼图,其中可同步部分采用QPSK,其他部分未任意调制数据。如果输入数据总满足过零特性,此时恢复信号性能最佳,和全工作环路相比较而言,使能控制环路会出现误差增加现象,但是,如果信道PPM足够小,该方案恢复精度完全满足需求。

 

 

 

 

4 结论

本文通过利用同步控制信号,提出了一种改进的定时恢复算法实现结构,并给出了具体的实现流程,通过仿真说明了算法的可行性。提出实现结构可用于任何发送信号为部分信号满足多零点要求的场景,具有较高的工程实现价值,目前已经成功应用到伪随机(PN)+正交频分复用(OFDM)体制的解调器中。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭