当前位置:首页 > 电源 > 功率器件
[导读]三极管也即半导体三极管或晶体三极管,是一种最重要的半导体器件。它的放大作用和开关作用促使电子技术飞跃发展。本文主要分享了三极管的基本知识,有助你更深入的了解有关电子元器件方面的知识。

一、三极管的概念

三极管顾名思义具有三个电极。二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。,是一种电流控制电流的半导体器件。其作用是把微弱信号放大成辐值较大的电信号, 也用作无触点开关。

三极管在中文含义里面只是对三个引脚的放大器件的统称,我们常说的三极管。

虽然都叫三极管,在英文里面的说法是千差万别的。电子三极管 Triode 这个是英汉字典里面“三极管”这个词汇的唯一英文翻译,这是和电子三极管最早出现有关系的,所以先入为主,也是真正意义上的三极管这个词最初所指的物品。

二、三极管的基本结构

1. 三极管结构

三极管的种类很多,按功率大小可分为大功率管和小功率管;按电路中的工作频率可分为高频管和低频管;按半导体材料不同可分为硅管和锗管;按结构不同可分为NPN管和PNP管。无论是NPN型还是PNP型都分为三个区,分别称为发射区、基区和集电区,由三个区各引出一个电极,分别称为发射极(E)、基极(B)和集电极(C),发射区和基区之间的PN结称为发射结,集电区和基区之间的PN结称为集电结。其结构和符号见下图1、图2所示,其中发射极箭头所示方向表示发射极电流的流向。

 

 

图1 两类三极管的结构示意图

2.三极管符号

中间横线是基极B,另一斜线是集电极C,箭头的是发射极E.

 

 

图2 三极管的符号示意图

三、三极管的原理

三极管分锗管和硅管两种,而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。

对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c.

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo.

在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)及基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流了。

由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得:

 

 

这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:

 

 

式中:β1--称为直流放大倍数,

集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:

 

 

式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。

四、三极管电极和管型的判别

(1) 目测法

① 管型的判别。一般,管型是NPN还是PNP应从管壳上标注的型号来辨别。依照部颁标准,三极管型号的第二位(字母),A、C表示PNP管,B、D表示NPN管,例如:

 

 

图3 常用三级管管级排列

3AX 为PNP型低频小功率管 3BX 为NPN型低频小功率管

3CG 为PNP型高频小功率管 3DG 为NPN型高频小功率管

3AD 为PNP型低频大功率管 3DD 为NPN型低频大功率管

3CA 为PNP型高频大功率管 3DA 为NPN型高频大功率管

此外有国际流行的9011~9018系列高频小功率管,除9012和9015为PNP管外,其余均为NPN型管。

② 管极的判别。常用中小功率三极管有金属圆壳和塑料封装(半柱型)等外型,图T305介绍了三种典型的外形和管极排列方式。

(2) 用万用表电阻档判别

三极管内部有两个PN结,可用万用表电阻档分辨e、b、c三个极。在型号标注模糊的情况下,也可用此法判别管型。

① 基极的判别。判别管极时应首先确认基极。对于NPN管,用黑表笔接假定的基极,用红表笔分别接触另外两个极,若测得电阻都小,约为几百欧~几千欧;而将黑、红两表笔对调,测得电阻均较大,在几百千欧以上,此时黑表笔接的就是基极。PNP管,情况正相反,测量时两个PN结都正偏的情况下,红表笔接基极。

实际上,小功率管的基极一般排列在三个管脚的中间,可用上述方法,分别将黑、红表笔接基极,既可测定三极管的两个PN结是否完好(与二极管PN结的测量方法一样),又可确认管型。

② 集电极和发射极的判别。确定基极后,假设余下管脚之一为集电极c,另一为发射极e,用手指分别捏住c极与b极(即用手指代替基极电阻Rb)。同时,将万用表两表笔分别与c、e接触,若被测管为NPN,则用黑表笔接触c极、用红表笔接e极(PNP管相反),观察指针偏转角度;然后再设另一管脚为c极,重复以上过程,比较两次测量指针的偏转角度,大的一次表明IC大,管子处于放大状态,相应假设的c、e极正确。

五、测判三极管的技巧

三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助大家迅速掌握测判三极管的技巧,下面给出了三极管的四句口诀的测判方法。

1.三颠倒,找基极

众所周知,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管。测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。图2绘出了万用电表欧姆挡的等效电路。红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。

假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。

2.PN结,定管型

找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

3.顺箭头,偏转大

找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e.

(1) 对于NPN型三极管,穿透电流的测量电路。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致顺箭头,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e.

(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c.

4.测不出,动嘴巴

若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e.其中人体起到直流偏置电阻的作用,目的是使效果更加明显。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭