当前位置:首页 > 电源 > 功率器件
[导读]1 引言矩形金属波导是微波/毫米波频段的重要传输线形式,由于其高功率容量和低损耗的特性,在各种微波/毫米波的天线、接收机、发射机、测试测量和低损耗部件中有广泛的应用

1 引言

矩形金属波导是微波/毫米波频段的重要传输线形式,由于其高功率容量和低损耗的特性,在各种微波/毫米波的天线、接收机、发射机、测试测量和低损耗部件中有广泛的应用。目前,由于大多数固态器件(MIC,MMIC)都是基于平面电路应用,其中绝大部分为微带电路。微带-波导过渡作为为连接片面电路与波导系统的重要形式。具有体积小,结构简单,频带宽、损耗小等优点,因而得到了广泛的应用。

关于微带-波导过渡的分析、设计的文献较多,有的还给出了特定形式下的设计参数,但由于在实际运用中,工作频段、安装方式以及介质基片与文献中不尽相同,需要设计师自行设计,而目前设计的方法多采用电磁场仿真软件进行参数计算、优化,过程繁琐,耗时巨大。提出了一种将电磁场仿真软件与电路仿真软件相结合的方法,可节省大量时间,但由于电路仿真软件模型的不严格,使得最终结果与全电磁仿真软件有所出入,需要进一步调整参数。

本文介绍一种微带-波导过渡的CAD设计方法,利用商用3维电磁仿真软件Ansoft HFSS的后处理功能,将通常需要进行场仿真计算的的5维变量,减少为2维半。且仿真结果与实际模型十分一致,从而快速、准确地完成微带-波导过渡的设计。

2 设计方法

目前常用的微带-波导过渡的方式为2种,都是将微带探针从波导宽边的中心插入,一种的介质面垂直与波导传输方向,称为H面探针,如图1所示,另一种介质面平行于波导传输方向,称为E面探针,如图2所示。本文介绍的方法对两种微带-波导过渡方式均适用,下面以Ka频段的E面探针为例,详细介绍微带-波导过渡的设计方法。该方法适用于其他频段的波导-微带过渡设计。

 

 

图1 H面探针

 

 

图2 E面探针

微带—波导过渡的构成形式如图3所示,探针从波导宽边的中心插入,在波导开窗处用一段匹配段将阻抗匹配至50欧姆,由于匹配段的宽度通常比50欧姆传输线要细,因此将其称为高阻线。在某些情况下,除了高阻线还需要采用一段1/4波长的阻抗变换段将阻抗匹配至50欧姆,以方便和MMIC相连。

 

 

 

 

图3 微带-波导过渡的基本形式

对微带-波导过渡性能有较大影响的电路参数共5个,由表1列出。探针插入处波导开窗的大小对性能也有一定影响,在设计时可先将其确定。一般的原则是开窗越小越小越好,以形成截至波导。由于需要仿真来确定的电路参数较多,如果在电磁仿真软件中进行一个5维的参数扫描,将耗费大量时间,而且难以得到最优值。通过等效模型和端口后处理,可以将需要在场仿真运算中扫描的参数减少到2.5维。

表1 影响微带-波导过渡性能的参数

探针长度探针宽度高阻线

长度高阻线

宽度波导短路面距离

LWL1W1D

首先,建立如图4所示的HFSS仿真模型,该模型将过渡中的微带线简化为一段宽度与探针宽度相同的微带线;波导短路面可由一个阻抗被规一化到0欧姆的端口来代替,通过端口后处理功能demmbed功能即可调整短路面距离D。因此,该模型中在场仿真计算中的变量只有探针长度L和探针宽度W。

在场仿真软件中对L、W进行一次2维的参数扫描,D的扫描可在计算完成后通过deembed功能实现,在计算结果中选取一组最优值,确定微带-波导过渡中L、W、D这三个参数。选取的原则是,由波导开窗处,即图4中的参考面看进去的微带端口的输入阻抗随频率的变化越小越好。

 

 

 

 

图4 简化仿真模型与短路面端口设置

 

 

 

 

图5 最优值的选取

然后,在已L、W、D已确定的基础上,建立如图6所示的仿真模型,该模型由微带探针和高阻线构成。对高阻线的宽度进行一次一维的参数扫描。通过定义微带端口的负载阻抗值(等效为外接50欧姆传输线)和利用deembed功能改变微带端口的参考面位置(等效为改变高阻线的长度),可将此模型等效为实际情况一致的仿真模型。[!--empirenews.page--]

 

 

(a)等效模型 (b)端口定义 (c)实际模型

图6 等效仿真模型与端口定义

在计算出的结果中选取最优值,确定微带-波导过渡的最后两个参数:高阻线长度L1和高阻线宽度W1。选取的方法跟第一相同,选取的原则为:1、输入阻抗尽量靠近理想匹配点。2、输入阻抗随频率的变化尽量小。

最后,将所确定的参数代入图6(C)所示的模型中进行一次场仿真运算,以验证等效模型的准确性。从图7中可以看出,等效模型的仿真结果与实际模型十分一致,从而可以验证,采用上述的设计方法,不仅可以节省大量时间,同时也可以保证其结果的准确性。

 

 

图7 最优值选取

 

 

等效模型 实际模型

图(7-a)仿真结果对比-S参数

 

 

实际模型 等效模型

图(7-b)仿真结果对比-输入阻抗

3 测试结果

利用上述方法,设计了一个H面微带-波导过渡,采用标准BJ320波导,基片介质为0.127mm厚度的ROGERS 5880,介电常数2.2。设计参数如下:

表2 微带波导过渡设计参数(单位:毫米)

探针长度探针宽度高阻线长度高阻线宽度波导短路面距离

1.850.60.40.152.65

背靠背的测试结果如图8所示,该结果包含一段10mm长的微带线,可以看出,该微带-波导过渡性能良好,在26GHz~40GHz频带范围内,背靠背的插损为0.3~0.8dB。

 

 

图8 背靠背测试结果(插入损耗)

4 结论

本文介绍了一种微带-波导过渡的设计仿真方法,整个设计过程均在三维电磁仿真软件HFSS中完成,利用端口处理功能简化模型,节省时间,同时保证仿真结果的准确性。试验证明,利用该方法,可以准确快速的完成所需的微带-波导过渡的全部设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭