它们的原理基于PN结及其组合、变形,同时还有结构更为简单的二极管、BJT、JFET等元件。本节将重点介绍电机控制器中常用的场效应晶体管——Mosfet。
【2025年3月14日, 德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX/OTCQX代码:IFNNY)扩展旗下XDP™ 数字保护产品系列,推出 XDP711-001。这是一款拥有 48 V 宽输入电压范围的数字热插拔控制器,具备可编程安全操作区域(SOA)控制且专为高功率 AI 服务器设计。该控制器拥有出色的输入及输出电压监控与报告功能,精度达 ≤0.4%,还有系统输入电流监控与报告功能,在全 ADC 范围内精度达≤0.75% ,可提升系统的故障检测和报告准确性。
半桥拓扑结构广泛用于各种商业和工业应用的电源转换器件中。这种开关模式配置的核心是栅极驱动器IC,其主要功能是使用脉宽调制信号向高端和低端MOSFET功率开关提供干净的电平转换信号。
今天,小编将在这篇文章中为大家带来MOSFET的有关报道,通过阅读这篇文章,大家可以对MOSFET具备清晰的认识,主要内容如下。
在下述的内容中,小编将会对MOSFET的相关消息予以报道,如果MOSFET是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。
以下内容中,小编将对MOSFET的相关内容进行着重介绍和阐述,希望本文能帮您增进对MOSFET的了解,和小编一起来看看吧。
本文中,小编将对MOSFET予以介绍,如果你想对MOSFET的详细情况有所认识,或者想要增进对MOSFET的了解程度,不妨请看以下内容哦。
MOSFET将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对MOSFET的相关情况以及信息有所认识和了解,详细内容如下。
实现业界超低导通电阻和超宽SOA范围
【2025年2月20日, 德国慕尼黑讯】电子行业正在向更加紧凑而强大的系统快速转型。为了支持这一趋势并进一步推动系统层面的创新,全球功率系统、汽车和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)正在扩展其CoolSiC™ MOSFET 650 V单管产品组合,推出了采用Q-DPAK和TOLL封装的两个全新产品系列。
最近的进展已经通过在低侧MOSFET(同步整流器)上取代压降来消除电流检测电阻。这种拓扑节省了感测电阻的成本和空间,并且还提供了效率的适度提高。
在电力电子领域,同步整流技术以其高效率、低损耗的特点,成为现代电源转换系统的重要组成部分。特别是在直流-直流(DC-DC)转换器中,同步整流技术通过使用两个MOSFET(金属氧化物半导体场效应晶体管)来控制电流的方向,从而实现了电能的有效传输。本文将深入探讨在设计同步整流电源时,如何选择合适的MOSFET以及设计其驱动电路,以确保电源的高效率和稳定性。
超宽的带隙(UWBG)材料可以扩大宽带盖(WBG)材料(例如碳化硅)(SIC)和氮化碳(GAN)在电源转换应用中提供的改进范围。在本文中,我们总结了基于UWBG铝(ALN)的MOSFET设备的最初初始演示 。开创性的工作突出了在电力转换应用中使用该材料的一些承诺和挑战。
面向工业、汽车、能源、照明和消费电子市场,产品价格富有竞争力,交货期短
在这个项目中,我将为WLED构建一个RGB PWM LED驱动程序。您可以使用此项目无线驱动12v RGB LED条。这个项目是WLED兼容,这使得控制容易得多。你可以用它驱动高达100w的RGB LED条。WLED运行在XIAO ESP32C3上,LED驱动器使用IRLFZ44N逻辑级MOSFET。让我们开始建造吧。
在工业电子设备中,过压保护是确保设备可靠运行的重要环节。本文将探讨如何使用开关浪涌抑制器替代传统的线性浪涌抑制器,以应对长时间的过压情况。与传统线性浪涌抑制器不同,开关浪涌抑制器能够在持续浪涌的情况下保持负载正常运行,而传统线性浪涌抑制器则需要在电源路径中的MOSFET散热超过其处理能力时切断电流。
今天,小编将在这篇文章中为大家带来栅极驱动器的有关报道,通过阅读这篇文章,大家可以对栅极驱动器具备清晰的认识,主要内容如下。
众所周知,GaNFET比较难驱动,如果使用原本用于驱动硅(Si) MOSFET的驱动器,可能需要额外增加保护元件。适当选择正确的驱动电压和一些小型保护电路,可以为四开关降压-升压控制器提供安全、一体化、高频率GaN驱动。
专为下一代电动汽车基础设施而设计,为高能效车载充电和逆变器提供结构紧凑的单元件解决方案
电路中出现的死区是指输入电压在一定范围内时输出电压不变的现象。例如,在脉冲宽度调制(PWM)电路中,当输入信号的幅值超过某一阈值时,开关管就会打开,输出信号的幅值就会随之增加。但是,当输入信号幅值降至某一范围内时,输出信号的幅值保持不变,从而产生了死区。