在新能源汽车高压电池管理系统中,电池管理系统(BMS)作为核心控制单元,需通过电压与温度传感器实时监测电芯状态。然而,高压环境下的电磁干扰(EMC)与电气隔离问题,已成为制约传感器可靠性的关键瓶颈。本文从隔离电路设计与EMC防护技术出发,解析高压电池包传感器设计的核心挑战与创新方案。
在智能交通系统的演进中,车路协同(V2X)技术通过车辆与道路基础设施的实时信息交互,构建起覆盖“车-路-云-人”的立体化感知网络。作为这一网络的核心感知节点,激光雷达凭借其毫米级测距精度与全天候环境适应性,成为突破传统传感器性能瓶颈的关键。然而,要实现激光雷达与V2X系统的深度协同,必须攻克多传感器时空同步这一核心难题——即通过统一的时间基准与空间坐标系,将分散的感知数据融合为具有时空一致性的三维环境模型。
轮胎压力监测系统(TPMS)作为现代汽车安全的核心组件,通过实时监测胎压与温度数据,构建起全天候的轮胎健康监护网络。其算法设计需兼顾低功耗运行与高精度异常识别,尤其在直接式TPMS中,传感器需在纽扣电池供电下持续工作5年以上,同时实现毫秒级压力追踪与爆胎风险预测。本文从算法架构、低功耗唤醒机制及异常压力识别策略三方面展开技术解析。
在智能电动汽车赛道上,激光雷达作为自动驾驶系统的核心传感器,其技术演进与自动驾驶等级提升密切相关。小米汽车通过“激光雷达+视觉融合”的技术路线,以禾赛AT128激光雷达为硬件基石,结合BEV+Transformer+占用网络算法,构建了从L2+辅助驾驶到L4级自动驾驶的渐进式技术布局。这一路线既体现了对技术可行性的务实考量,也展现了小米在智能驾驶领域的战略野心。
自 20 世纪 90 年代商业化以来,锂离子电池凭借其高能量密度、长循环寿命和较高的充放电效率,成为了现代电子设备和电动汽车的主流电源。然而,随着全球对清洁能源需求的急剧增长,锂离子电池面临着资源稀缺和成本高昂的挑战。在此背景下,钠离子电池作为一种潜在的替代方案,正受到越来越多的关注。那么,钠离子电池究竟能否取代锂离子电池呢?这需要我们从多个维度进行深入剖析。
在自动驾驶技术向L3级演进的关键阶段,传感器冗余设计成为保障行车安全的核心命题。L3级系统允许驾驶员在特定场景下脱离方向盘,但要求车辆在传感器失效时实现毫秒级故障切换,确保控制权无缝转移至备用系统。激光雷达与视觉传感器的融合架构,通过硬件冗余与算法协同,构建起双保险安全机制,成为当前主流技术路线。
电机作为一个用电设备,供电的保证是保证其正常运行的一个主要指标,过度的欠压会造成电机的失速,电流的过大,长期的欠压会导致电机和输电线路长时间工作在过载状态下。
普遍而言,电动汽车在能量转换方面的效率是相对较高的,通常可以达到大约80%-90%的范围内。
单相桥式整流电路是一种利用四个二极管将交流电转换为直流电的电路。其工作原理基于二极管的单向导电性,通过交替导通和截止来实现整流功能。
根据工况精确控制喷油量,提升燃烧效率。3点火系统管理:优化点火时机以降低排放并提高动力输出。
随着汽车产业向智能化、电动化、个性化方向演进,传统刚性传感器已难以满足复杂曲面内饰与人性化交互的需求。柔性传感器凭借其可弯曲、可拉伸、高灵敏度的特性,正成为汽车内饰创新的核心技术之一。从座椅压力分布监测到智能触控表面,柔性传感器正在重新定义人车交互的边界,推动汽车从“移动工具”向“第三生活空间”转型。
氢燃料电池车作为新能源汽车的核心发展方向,其安全性直接取决于车载氢系统的实时监测与防护能力。氢气易燃易爆的特性要求传感器必须具备高精度、快速响应及防爆设计,而压力与温度传感器的稳定性则关乎系统运行的可靠性。本文从氢浓度、压力、温度三大核心参数出发,解析传感器选型的关键技术指标与防爆设计要点。
传感器数据总线作为连接感知层与计算层的核心通道,其带宽效率直接影响自动驾驶系统的实时性与可靠性。传统CAN总线因带宽限制(1Mbps)已难以满足L3级以上自动驾驶对高清摄像头、激光雷达等高带宽传感器的数据传输需求,而CAN FD(Flexible Data Rate)与车载以太网的融合应用,为域控制器中的总线设计提供了全新解决方案。本文从协议特性、优化策略及工程实践三个维度,解析两者在带宽优化中的协同机制。
汽车电子系统向智能化、网联化加速演进,传感器软件升级(Software Over-The-Air, SOTA)已成为提升车辆功能安全、优化性能并延长生命周期的关键技术。与传统硬件升级不同,SOTA通过无线通信技术实现固件(Firmware)的远程更新,但这一过程需满足ASPICE(Automotive SPICE)流程对软件质量、功能安全及可追溯性的严苛要求。本文从ASPICE框架出发,解析传感器固件更新与回滚机制的设计逻辑与技术实现。
汽车电子向智能化、网联化加速演进,车规级M2M(Machine-to-Machine)模块作为连接车辆与云端的核心组件,其设计需同时满足AEC-Q100标准对可靠性、功能安全及电磁兼容性(EMC)的严苛要求。本文从EMC防护与热管理两大维度,解析车规级M2M模块的设计逻辑与技术突破。