当前位置:首页 > 电源 > 电源
[导读]引言 总线电压浪涌不仅对DC/DC转换器构成危险,也对负载带来威胁。传统的过压保护方案采用熔丝,其动作速度和可靠性均未必足以保护诸如FPGA、ASIC和微处理器等负载。一种

引言

总线电压浪涌不仅对DC/DC转换器构成危险,也对负载带来威胁。传统的过压保护方案采用熔丝,其动作速度和可靠性均未必足以保护诸如FPGA、ASIC和微处理器等负载。一种较好的解决方案是可准确和快速地检测过压情况,随后通过迅速断接输入电源并利用一条低阻抗通路释放负载上的过电压来做出响应。借助LTM4641中的保护功能就可做到这一点。

电源和保护

LTM4641是一款4.5V至38V输入、0.6V至6V输出、10A降压型μModule稳压器,其具有高级输入和负载保护选项,包括:

(A)输入保护

●具闭锁门限的欠压闭锁、过压停机

●N沟道过压电源中断MOSFET驱动器

●能利用少量外部元件构成浪涌抑制器

(B)负载保护

●稳健、可复位的闭锁过压保护

●N沟道过压放电功率MOSFET驱动器

此外,针对下列故障的跳变检测门限是可定制的:输入欠压、过热、输入过压和输出过压。特定的故障情况发生时可设定为闭锁或迟滞重启响应——或者停用。

输出过压和负载保护

电源和半导体控制IC行业中的常用输出过压保护方案是接通同步(底端)MOSFET.这种方法可在严重的负载电流下降过程中提供某些过压保护,但在避免负载遭受诸如高压侧功率开关MOSFET短路等真实的故障情况则并不是非常有效。如图1所示,当把一个输出放电MOSFET(MCB)和一个输入串联MOSFET(MSP)配合起来使用时,LTM4641可提供同类最佳的输出过压保护。


图1:具输入断接和快速放电输出过压保护功能的LTM4641



MCB是一个任选的外部放电器件,其位于VOUT上。假如输出电压超过了一个可调门限(默认值为高出标称值11%),则LTM4641立即将其CROWBAR输出逻辑拉至高电平(响应时间的最大值为500ns)并闭锁其输出电压:功率级变至高阻抗状态,而且内部顶端和底端MOSFET均被闭锁。CROWBAR输出接通MCB,对输出电容器进行放电并防止输出电压发生任何进一步的正向摆动。

MSP被置于输入电源(VIN)和LTM4641的功率级输入引脚(VINH)之间,并被用作一个可复位的电子式电源中断开关。当LTM4641的内部电路检测到某种故障状况,例如一个输出过压(OOV)情况,MSP的栅极在2.6μs(最大值)内放电,而MSP关断。于是输入电源与LTM4641的功率级输入(VINH)断接,从而可阻止有害的(输入)电压到达昂贵的负载上。另外,LTM4641还采用一个独立的基准电压以产生一个OOV门限(与控制IC的带隙电压分开)。

图1示出了当顶端MOSFET MTOP发生故障(因而在VIN和SW节点之间引起短路)时的CROWBAR和VOUT波形。CROWBAR在500ns内变至高电平,并接通MCB以将输出短路至地。VOUT不可以超过规定输出电压的110%.

输入过压和欠压保护

LTM4641具有输入欠压和过压保护功能,其跳变门限可由用户设定。请参阅图2.

UVLO引脚直接将信号馈入一个比较器的反相输入,其跳变门限为0.5V.当UVLO引脚电压降至低于0.5V时,开关动作被禁止;当UVLO引脚电压超过0.5V时,可恢复执行开关动作。IOVRETRY和OVLO引脚各自直接将信号馈入跳变门限为0.5V之比较器的同相输入端。当IOVRETRY引脚电压超过0.5V时,开关动作被禁止;当IOVRETRY引脚电压降至0.5V以下时,开关动作可恢复。当OVLO引脚电压超过0.5V时,开关动作被禁止;而当OVLO引脚电压随后降至低于0.5V时,开关动作则要到锁存器被复位之后才能恢复。这三个引脚为定制LTM4641的运行方式提供了附加的灵活性。


图2:用于设定输入UVLO、IOVRETRY和OVLO门限的电路

效率

图3示出了当采用12V的典型输入电压时LTM4641的效率曲线(针对图1所示的电路)。尽管内置了所有这些保护电路,LTM4641仍能实现高效率。


图3:LTM4641的效率曲线


结论

LTM4641μModule稳压器可监察输入电压、输出电压和温度状况。该器件能够提供全面的电气和热保护功能,从而避免处理器、ASIC和高端FPGA等负载遭受过大电压应力而受损。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电子电路设计中,三极管和MOSFET是最常用的半导体器件,广泛应用于放大、开关、稳压等电路。三极管是电流控制型器件,MOSFET是电压控制型器件,两者在特性和应用场景上存在较大差异。如何根据电路需求选择合适的三极管或M...

关键字: MOSFET 三极管

开关电源的效率直接关系到能源利用率、散热设计和产品可靠性,而MOS管作为开关电源的核心器件,其损耗占电源总损耗的40%-60%。深入理解MOS管的损耗机理,并针对性地进行优化,是提高开关电源效率的关键。MOS管的损耗主要...

关键字: MOS MOSFET

中国上海,2026年1月29日——东芝电子元件及存储装置株式会社(“东芝”)今日宣布,开始提供适用于大电流车载直流有刷电机桥式电路的栅极驱动IC[1]——“TB9104FTG”。该器件适用于电动尾门、电动滑门和电动座椅等...

关键字: 栅极驱动IC 电动座椅 MOSFET

在电力电子领域,MOSFET(金属氧化物半导体场效应晶体管)以其高速开关特性、低驱动功耗和易于集成的优势,成为现代电子设备的核心元件。从智能手机的电源管理到电动汽车的逆变器,从数据中心服务器到航空航天控制系统,MOSFE...

关键字: MOSFET 电流

【2026年1月12日, 德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)推出全新封装的 CoolSiC™ MOSFET 750V G2系列,旨...

关键字: MOSFET 导通电阻 静态开关

创新设计使系统能够采用额定值较低的MOSFET或二极管,同时确保可靠的保护功能,非常适合各种需要12V电池防反接保护的汽车应用

关键字: 二极管 电池 MOSFET

IGBT(绝缘栅双极型晶体管)作为现代电力电子系统的核心器件,凭借其高输入阻抗、低导通损耗和快速开关能力,广泛应用于新能源汽车、工业变频、可再生能源等领域。其开关过程直接决定了系统的效率、稳定性和可靠性。

关键字: IGBT MOSFET

中国上海,2025年12月18日——全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,适用于主驱逆变器控制电路、电动泵、LED前照灯等应用的车载低耐压(40V/60V)MOSFET产品阵容中,又新增HPLF50...

关键字: MOSFET 逆变器 电动泵

二极管在正向工作时具有小的电压降(约0.2V至0.7V)。当反向布线时,它们有很大的电压降。流行的1N4001二极管的反向电压为50V或更高,而1N4007二极管的反向电压为1000V或更高。这意味着当它们的反向击穿电压...

关键字: 齐纳二极管 MOSFET 晶体管

此次合作将带来更智能的汽车电源解决方案,兼具卓越能效与优化性能

关键字: 电源 MOSFET
关闭