在开关模式电源中使用GaN开关是一种相对较新的技术。这种技术有望提供更高效率、更高功率密度的电源。本文讨论了该技术的准备情况,提到了所面临的挑战,并展望了GaN作为硅的替代方案在开关模式电源中的未来前景。
开路检测功能对于安全可靠地运行电池管理系统(BMS)起着至关重要的作用。鉴于其重要性,我们建议对BMS感兴趣或会参与BMS设计的人员花时间了解这项功能。本文以ADI公司的电芯监控器为例,详细讨论了BMS电路在与外部电芯连接后,如何利用算法准确识别几乎所有开路情况。文中关于开路检测算法的讨论,目的是让读者更深入地了解这个BMS功能。本文提供的开路检测伪代码旨在为BMS设计人员提供设计参考。
大多数工业和重型商用变频驱动器都采用三相输入。较小的驱动器可能使用单相线电压。特别是在电动汽车和其他电池供电的应用中,驱动器通常采用直流供电。IMDA电源分析软件支持所有这些配置(参见上集的“接线配置”)。在IMDA测量包中,电能质量测量组和谐波测量组用于计算驱动器的功耗以及驱动器对配电系统的预期影响。
半桥拓扑结构广泛用于各种商业和工业应用的电源转换器件中。这种开关模式配置的核心是栅极驱动器IC,其主要功能是使用脉宽调制信号向高端和低端MOSFET功率开关提供干净的电平转换信号。
使用二阶输出滤波器可将超低噪声µModule稳压器的输出噪声降低90%以上。选择电容和电感元件时必须谨慎,以确保控制回路能够快速且稳定地运作。这种设计对于无线和射频应用特别有益,因为快速瞬态响应可有效缩短系统消隐时间并提升信号处理效率。此方法的噪声水平与LDO相当,效率堪比开关稳压器。
大多数现代电机驱动系统使用某种调制形式来控制电机频率,从而控制电机速度。在大多数情况下,此类变频驱动器(VFD)通过输出精心控制的脉冲宽度调制(PWM)波形来实现这一点。此类系统通常以三相形式输出功率,因为三相是电机的最佳配置。
本文详细介绍了GMSL和FPD-LINK的技术特点、应用场景,以及泰克公司提供的先进测试解决方案,帮助工程师应对高速信号完整性测试的挑战,确保车内通信系统的可靠性和高性能。
本文将以 MYIR的 MYC-LD25X核心模块及MYD-LD25X开发平台为例,讲解如何使用 STM32CubeMX 来实现Developer package最小系统和外设资源的配置。
本文将以 MYIR 的 MYC-LD25X 核心模块及MYD-LD25X开发平台为例,讲解如何使用 STM32CubeMX 来实现Developer package最小系统和外设资源的配置。
本文将以 MYIR 的 MYC-LD25X 核心模块及MYD-LD25X开发平台为例,讲解如何使用 STM32CubeMX 来实现Developer package最小系统和外设资源的配置。
4200A-SCS参数分析仪可简化这些电气测量过程,集成直流和快速I-V、C-V测量功能,具备控制软件、图形绘制和数学分析能力。它适用于多种测量,包括直流/脉冲I-V、C-V、C-f、驱动级电容分析(DLCP)、四探针电阻率和霍尔电压测量。本应用说明描述了如何使用4200A-SCS对光伏电池进行这些电测量。
IO-link从站微控制器需要同时执行多项任务,因此可能难以在可接受的指定时间窗口内响应请求。在执行微控制器不能中断的任务时尤其如此。解决此时序挑战的一个典型解决方案是使用第二个微控制器来管理IO-Link堆栈,从而在IO-Link从站和IO-Link主站之间保持更稳定的响应时间间隔。然而,该方法的效率极低,因为其功耗更高且需要更大的PCB,因此需要更大的传感器外壳。一个更好的替代方案是使用能够在通信路径中管理数据链路和物理层的收发器。通过使用该收发器,从站微控制器无需再执行此任务,设计人员能够设计出更小巧、更复杂、功能更强大且具有成本效益的工业现场仪器。
本文提出,CMOS开关可以取代自动测试设备(ATE)厂商使用的PhotoMOS®开关。CMOS开关的电容乘电阻(CxR)性能可以与PhotoMOS相媲美,且其导通速度、可靠性和可扩展性的表现也很出色,契合了先进内存测试时代ATE厂商不断升级的需求。
本文将深入探讨TekHSI的技术优势、与现有工具(如TekScope和Python)的集成应用,以及它如何为工程师和研究人员提供更高效、更智能的解决方案。
SiC器件的快速开关特性包括高频率,要求测量信号的精度至少达到100MHz或更高带宽 (BW),这需要使用额定500MHz或更高频率的示波器和探头。在本文中,宽禁带功率器件供应商Qorvo与Tektronix合作,基于实际的SiC被测器件 (DUT),描述了实用的解决方案。